当时牛顿对导数的定义为:
当增长为时,的立方(记为)成为的立方(记为),即的立方结果为。与的增量分别为和。的增量除以的增量的结果为,然后代入h=0让增量消失,则它们的最后结果为。我们知道这个结果是正确的,但是推导过程确实存在着明显的偷换假设的错误:在论证的前一部分假设是不为0的,而在论证的后一部分又被取为0。那么到底是不是0呢?这就是著名的贝克莱悖论。这种微积分的基础所引发的危机在数学史上称为第二次数学危机,而这次危机的引发与牛顿有直接关系。历史要求给微积分以严格的基础。
第一个为补救第二次数学危机提出真正有见地的意见的是法国数学家达朗贝尔。他在1754年指出,必须用更可靠的理论去代替当时使用的粗糙的极限理论。但是他本人未能提供这样的理论。最早使微积分严格化的是拉格朗日。为了避免使用无穷小推理和当时还不明确的极限概念,拉格朗日曾试图把整个微积分建立在泰勒公式的基础上。但是,这样一来,考虑的函数范围太窄了,而且不用极限概念也无法讨论无穷级数的收敛问题,所以,拉格朗日的以幂级数为工具的代数方法也未能解决微积分的奠基问题。
到了19世纪,出现了一批杰出的数学家,他们积极为微积分的奠基工作而努力,其中包括了捷克的哲学家波尔查诺,他曾著有《无穷的悖论》,明确地提出了级数收敛的概念,并对极限、连续和变量有了较深入的了解。分析学的奠基人,法国数学家柯西在1821—1823年间出版的《分析教程》和《无穷小计算讲义》是数学史上划时代的著作。在那里他给出了数学分析一系列的基本概念和精确定义。
对分析基础做更深一步的理解的要求发生在1874年。那时的德国数学家维尔斯特拉斯构造了一个没有导数的连续函数,即构造了一条没有切线的连续曲线,这与直观概念是矛盾的。它使人们认识到极限概念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。黎曼发现,柯西没有必要把他的定积分限制于连续函数。黎曼证明了,被积函数不连续,其定积分也可能存在。也就是将柯西积分改进为黎曼积分。
这些事实使我们明白,在为分析建立一个完善的基础方面,还需要再深挖一步:理解实数系更深刻的性质。这项工作最终由维尔斯特拉斯完成,使得数学分析完全由实数系导出,脱离了知觉理解和几何直观。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源