一大群粒子
在旧金山半岛280号州际公路一座长长的、弯曲的立交桥下,有一座四英里长的建筑物横跨绵延起伏的洛斯盖托斯山区。大多数人从未注意过这一由棕色混凝土搭建而成的其貌不扬的建筑物,或者在这幅加州斯坦福直线加速器中心(SLAC)的空中鸟瞰图里,两英里长的直线加速器横跨而过,向西延伸。电子或者其他亚原子粒子像微小的确子弹一样从附近的一头发射,沿着高速公路下面的加速器加速,把它击碎。这类实验的结果揭示了原子核及其相关奥秘。当他们呼啸而过时即便注意到了,但对其非同寻常的长度也一定毫无认识,他们更不知道成千上万的高速电子正在以同一个步伐飞速穿越势垒。与电子的高速相比,高速公路上的汽车就像蜗牛爬行。这座横跨于熊果(产于北美洲西部)树丛和草坡之上的巨型狭长建筑物毫不起眼,唯一的引人注目之处仅在于它要比一般建筑物长得多,并且有些不可思议的是,它毫无弯曲迂回的结构。
但它却是非常有名的建筑。熟悉它的人知道那就是SLAC,里面蕴含有当代物理学家对一个古老问题的回答:你如何才能看到可以想象的最小的物质组分——万物由之组成的微小单位。如此巨大的SLAC提供了一个窗口,借此可以看见组成原子的极小微粒。
研究的发端
但是先让我们稍作回顾。开始(或者就科学史所能涉及而言,接近于开始)要从古希腊说起。当时有一个人名叫留基伯,还有他的学生德谟克利特,他们提出万物都是由某种极小的基本单位所组成的。他们把这一微小、坚硬、不可分的粒子称为原子(来自希腊语atomos,意即“不可分的”,或者换一种表述——“击不破的”)。他们说,这些原子因太小而看不见,但如果你使物质不断分裂,一直碎到无法再碎时,就得到了原子。
这是大约2400年前的事情,这一观念传播得很慢。当时以及以后许多世纪里的大多数思想家很少注意到这个观念,直到17世纪末,它才开始引起人们更多的兴趣。英国化学家波义耳就是一位原子论者,牛顿也认同这个观念。牛顿在1704年出版的《光学》一书中写道,他相信所有物质都是由“坚固实心的、不可穿透的可动粒子”组成,他认为这种粒子必定要比“任何由它们所组成的有孔物质坚实得多。”但即使牛顿也不知道如何才能看到他认为一定存在的这些粒子,所以物理学家继续研究能量与物质、原因与结果的关系。与此同时,化学家继续探讨后来所谓的“元素”。
过了不到一个世纪,一位固执己见的名叫道尔顿的化学家第一次提出了可以进行定量检验的原子论。道尔顿定义原子是元素的最小单元,他还发表了第一份当时已知元素的原子量表,他的工作为在以后一个世纪里发现几十种新元素提供了奠基石。然而道尔顿和他的同代人没有认识到的是,道尔顿的“原子”和留基伯及德谟克利特的不可分的“原子”并不是一回事,后者所谓不可分“原子”乃是自然界还有待发现的东西。
19世纪末,随着X射线和其他形式辐射的发现,这一差别的最初线索开始变得明朗化。科学家发现,这些不同种类的辐射都是由原子,也就是道尔顿原子所辐射出的粒子组成的。如果原子可以释放粒子,那么显然,原子就不是不可分的,一定还有某种更小的东西。1896年,汤姆孙证明了电子的存在,这是一种小而轻的带负电的粒子,质量只有氢原子质量很小的一个零头。这并不能解释放射性粒子是从哪里来的,但这是一个开头,从此开创了亚原子物理学这一领域。
1911年,卢瑟福从他及其研究小组在加拿大的麦克吉尔大学和英国的曼彻斯特大学所做实验中得出结论,原子内的绝大部分区域是空心的。汤姆孙认为,带负电的电子沿轨道在其周边旋转,就像是一个微型太阳系里的微小行星,由带正电的粒子组成的核处于原子的中心(这些粒子很快就被命名为质子)。
丹麦物理学家玻尔1912年到英国参加研究工作,他是少数几位认同原子大部分区域是空心的这一观点的物理学家之一。1913年,他提出卢瑟福模型的改进版,亦即处于中心的带正电的核被沿不同能级运行的电子所围绕。玻尔的模型综合了以前的所有事实:汤姆孙的电子、卢瑟福的1911年卢瑟福首次描述原子是由密集的带正电的核以及带负电的粒子(电子)组成,电子在几乎空旷的空间里沿着围绕核的轨道旋转。正核和量子理论,而量子理论是普朗克在1900年首先提出的。普朗克理论背后的基本思想是,你可以把光子或者量子(包含光和所有电磁能的微小能量包)看成既是波,又是粒子,而不是非此即彼的关系,在此基础上,即可解释原子的行为和亚原子的相互作用。这一思想看起来似乎怪异,但是量子理论却因此解释了大量无法用其他方式解释的现象,终于引起了物理学的革命。
到了20世纪30年代,物理学开始发生急剧的变化:新粒子不断地被发现,伴随着每一个新发现,原子观念以及它确切像是什么之类的说法就要作相应的修改。道尔顿的新原子很快就跟留基伯与德谟克利特那不能分裂的、形状类似弹球的基本粒子没有任何相似之处了。它不是不可分裂的,它也不是一个实体球体。但是,说它是元素的最小基本粒子还是可以成立的。
1930年,泡利根据他对实验数据的研究,提出了这样的想法:在β放射线中,一定在放射一种奇怪的未知粒子,它没有质量(或者几乎没有),没有电荷,特别是与任何东西没有相互作用。为了解释反应中能量的损失,他认为这一粒子必定存在,否则就不得不放弃能量守恒定律,而他认为这一放弃并不可取。四年后,费米进一步发展了泡利的思想,并且给这一微小粒子起了一个名字,叫做中微子,意即“小的中性粒子”。
中微子几乎不可能检测到,多年来它一直隐而不现,没有人能够证明它的存在。起先有人怀疑泡利玩的只是某种账目把戏——为的是在能量的收支上取得平衡。但是1956年,有人利用核电站做了一个精致的实验,证明幽灵般的中微子确实存在,泡利的说法获得了认可。近年的实验,一个是1995年在加拿大安大略的萨德伯里中微子观测站(SNO)完成,另一个是1998年在日本东京大学的宇宙线研究所完成,解决了有关中微子一直存在的奥秘:为什么只有预计中的一半中微子抵达了地球?答案是,某些中微子在到达地球的途中改变了性质,结果无法被检测到。这些实验暗示宇宙和原子领域之间存在着相互依赖性。
也是在1930年,根据一位28岁的英国年轻物理学家狄拉克提出的理论,亦即存在另一种假设的粒子,它与电子相似,但具有正电荷。其实,基于狄拉克的这一努力,亦即使得量子论和相对论相互结合,物理学家开始得出这一令人惊奇的结果:无论物质存在于何处,它的镜像——反物质——也一定存在。正如海森伯所说,反物质的概念也许是20世纪物理学所有伟大突破中最大的一个。尽管狄拉克拥有杰出的数学才能,这一思想还是遭到了某些人反对。过了不久,在1932年,有一位年轻的美国物理学家名叫安德森,他在加州理工学院利用强磁铁和云室终于看到了它——至少看到了一种亚原子粒子的踪迹,它看起来像电子,却被磁铁拉向相反的方向。他把这一新粒子称为正电子。
与此同时,也是在1932年,剑桥大学的查德威克(James Chadwick,1891—1974)同时发现了另一种粒子存在的强硬证据,这种粒子没有电荷,却位于大多数原子的核中,他称其为中子。这一粒子很容易检测,它可以解释许多现象,其中包括原子序数和原子量之间从来都难以理解的差异。带负电的电子数和原子核里带正电的质子数应该平衡,但是除了氢以外,所有原子的质量都超过它所带的质子数,至少是其两倍。这些质量是从哪里来的?现在答案似乎清楚了:核中的电中性粒子。
在以后的年代里,一切都将发生变化。1935年,京都大学的年轻日本物理学家汤川(Yukawa Hideki,1907—1981)对一个海森伯曾经指出的重要问题——是什么使得这些中子和质子在核中如此紧密地相连?——作出解答:如果核内只有带正电的质子和查德威克不带电的中子,那么,核内唯一的电荷就是正的,而同号带电粒子会相互排斥,为什么这些粒子不沿相反方向飞离呢?汤川提出,这也许是由于有某种“交换力”在核中起作用——但是他从未说过“交换力”是什么以及它起作用的机理。
汤川认为,既然普通的电磁力涉及光子的传递,那么一定有某种在核内发挥作用的“核力”,它涉及某种其他实体的传递。这一核力必定只有极短的力程,它的大小只有核直径那样大(大约为1厘米的十万亿分之一)。这个力一定极其强大,强大到足以克服质子之间正电荷的斥力从而把两个质子束缚在一起。还有,根据实验结果,这个力一定是随距离的增加非常快速地减少,因此当超出核的周边时,它就完全消失了。
汤川提出了一个理论,大意是,当中子和质子相互间来回交换粒子时,就会产生核力。他说,这些粒子的质量取决于力作用的力程。力程越短,所需的质量越大。为了能在核的范围内起作用,传递的粒子应该大约具有电子质量的200倍和中子或者质子质量的九分之一。
携带这些粒子的短程力合乎逻辑地被称为强力。至于汤川的粒子,几年后为了尊敬它的提出者,被称为汤川子,但是它早已有了一个名字,叫做介子,这是因为当时认为这种粒子的质量处于质子和电子之间(后来它又叫做“汤川粒子”)。第二年,安德森用探测正电子轨迹的同一套仪器找到他认为的介子。不久后才搞清楚,安德森的新粒子并非介子,而是另一种叫做μ子的粒子,直到1947年汤川的介子实际上才得到验证。
到了1947年,物质和辐射的最终基本单元清单中,已经扩大到包括电子与它的反面孪生兄弟正电子,以及质子、中子、μ子、π介子、中微子和光子。后来证明,这些粒子并不像当时物理学家设想的那样全都是基本单元,不久他们发现质子、中子和介子都可以分裂成更小的成分。汤川把物理学家引导到更小和更基本的研究层次上,使亚原子粒子的数目达到了几百个。道尔顿如果现在看到他的终极基本粒子,一定会大吃一惊。
于是我们开始进入亚原子世界——这是一个令人惊异的世界。不久以后,物理学家有了一份新的清单,其中用特殊的名字来描述亚原子粒子的极小世界和在其中起作用的各种力。他们在谈论这些微小粒子时用到一些异想天开的名字,例如安德森的μ子,再加上轻子、π介子、胶子和夸克(最奇怪的名字)——他们在讨论时用到很多古怪的词汇。
量子理论与麦克斯韦理论的结合
在第二次世界大战的1941年至1945年之间,美国在新墨西哥州中北部的洛斯阿拉莫斯结集了最庞大的物理学家团队。
在这支为建造原子弹而组建的高度团结、齐心协力的团队里,出现了一群物理学家,其中既包括富有经验的高级科学家[诸如费米和贝特(Hans Bethe,1906—2005)],又有年轻的创新人才(诸如费恩曼)。
费恩曼很早就赢得了物理学界新星的声誉,他在“向无穷小作战”的领域中功勋卓著。这场作战是要找到一种理论,从而把量子理论与麦克斯韦高度成功的19世纪电磁场理论结合在一起。
到了1946年,20世纪物理学两大革命,即量子力学和相对论,都已经对亚原子粒子的认识产生了深远的影响。海森伯的“不确定原理”认为,电子的速度和位置不可能同时确定,我们所能知道的只是它出现的概率。还有,根据量子规则,可以创造一种叫做“虚粒子”的现象,通过借给它必要的能量,让它生存一瞬间,然后突然消失。于是就可能存在一个真正的电子,其精确位置我们永远也不可能知道,周围是一簇瞬时的虚光子。光子(光的信使)让我们知道电子就在那里。这些光子还会非常轻微地改变电子的特性,我们可以通过仔细而精确的测量,测出这些变化,并且通过耐心的理论计算作出分析。所有这些使得在一个实验中,测量实在的、可观察的电子的过程大为复杂。
如果你对此感到迷惑不解,可以找些非常聪明的伙伴谈谈。请听费恩曼几十年前是怎样开导他的学生们的:“电子和光的行为方式是你以前从来没有见过的,你过去的经验是不够用的。在极小的尺度上事物的行为面目全非。”费恩曼还补充说,简化和比拟并不顶事,原子绝不像太阳系或者弹簧或者云层那样。只有一种简化真正有效,他说:“电子在这方面的行为和光子完全一样,都是非常古怪的……”
“我想我可以确定地说,没有人理解量子力学……我要告诉你自然界是怎么回事。如果你只是承认她的行为也许就是这样,你就会发现她是一个讨人喜欢、令人陶醉的东西。如果有可能避免,就不要总这样对自己说:‘它怎么可能会是这样?’因为你将一无所获,从而不可避免地掉进一个死胡同。没有人知道,它怎么可能像是这样……”
然后,费恩曼继续说明各种实验和计算以及所有的证据是如何指向这样的事实:这一微观世界的行为与我们知道的全然不同。事实上,费恩曼的工作——量子电动力学(简称QED)就是在理论上把所有的光现象、无线电、磁现象和电现象都联系在一起。与此同时,其他两位科学家也各自独立地做出了同样的理论:纽约出生的施温格(Julian Seymour Schwinger,1918—1994)和日本的朝永振一郎(Tomonaga,1906—1979)。
施温格是一位神童,14岁进入纽约城市学院,21岁在哥伦比亚大学完成博士论文,29岁在哈佛大学升为教授。他是这所大学有史以来取得这一资格的最年轻的一位。朝永振一郎是汤川在京都大学的同学,曾经到德国与海森伯共事过一段时间,然后回到日本,1939年从东京帝国大学(后来称为东京大学)获得博士学位。“二战”期间,朝永振一郎与美国和欧洲物理学家的联系被切断,他在东京教育大学任教期间从事的研究就是量子电动力学,1956年他成了该校校长。
然而,20世纪40年代末,关于电子与虚粒子相互作用的计算却得出这一结论:电子质量趋于无穷大——这是一个明显的错误,每个人都承认对于如此微小的粒子来说,这是荒谬的结果。费恩曼、施温格和朝永振一郎以新的理论眼光和从未有过的精确性,在数学上处理电子的行为,从而克服了这一错误。他们的计算可以极其精确地解释电子、正电子和光子的电磁相互作用。那么,有没有可能同样处理被所谓的强力牢牢约束在核内的中子和质子呢?希望很大。
粒子的阅兵式
用于揭示原子核秘密的实验进行得不太顺利。后来才明白,原子核与强核力比想象的要复杂得多。
早在1941年,汤川和科学界其他人就已经认识到,1936年安德森发现的介子并不是预言的强力携带者,而是别的什么东西。在1941年12月7日日本偷袭珍珠港之前不久,汤川正在京都,他沮丧地写道:“介子理论(他这样称呼)今天陷入僵局了。”
战争延缓了科学家之间的通信,也延缓了研究工作,不过仍有三位意大利物理学家设法在罗马的地下窒里秘密进行一个实验。他们的实验证明,安德森的介子很难与原子核相互作用。当他们终于有可能宣布实验结果时,已经是战后的1947年,于是再次开始继续寻找汤川的介子。
这段时间不长。战后,一家英国化学公司开始生产一种照相乳胶,可以显示高能宇宙射线。这时,布里斯托尔的鲍威尔(Cecil Frank Powell,1903—1969)正在领导一个小组,用这些乳胶追寻宇宙射线的踪迹。由于宇宙射线是人眼看不见的,鲍威尔和他的小组需要有一种方法来“看”宇宙射线和它们的行为。一个带电粒子穿过乳胶会留下一条离子的痕迹,结果在乳胶上形成一系列黑色的颗粒。从颗粒的数目和密度,鲍威尔及其同事们可以推算出粒子的某些特性,如质量和能量。还有,当他们观看宇宙射线粒子的踪迹时,他们发现了证据,证明有一些粒子是以强力与原子核相互作用的。再有,它们的重量非常接近于汤川预言的质量,比安德森的介子略微重一些。鲍威尔用希腊字母π和μ来区别两种中等重量的粒子,称新粒子为π介子,而把安德森的介子称为μ介子,后来就叫做μ子。那是1947年,正值费恩曼等人正在巩固QED以便解释和预言电子的行为。于是,人们开始激动地期待突破时刻的到来,以便一举解决原子核中的粒子问题。
然而,并不是每个人都欣喜若狂。鲍威尔的发现意味着,安德森的μ子是“额外”的,根据所有的现行理论,似乎是不必要的。哥伦比亚大学的物理学家拉比(Isidor Rabi,1898—1988)幽默地将了一军:“是谁订的货?”
核的故事不仅没有澄清,反而变得越来越混乱。在π介子之后,物理学家开始发现与它有关,或者与质子有关的一族一族的粒子。粒子的每次新发现,都使人更加认清,围绕核的虚云团一定比以前想象的更复杂,而描述相互作用的数学方程也变得无望地难解。1947年,曼彻斯特大学有两位科学家在他们的云室中认出了一个粒子,他们称之为K介子,以对应于π介子。(云室是一种实验装置,它靠过饱和蒸气中形成的液滴痕迹,使带电亚原子粒子的路径变得可见。)两年后,鲍威尔的小组在他们的乳胶里发现有一个带电粒子的轨迹分成三个,π介子,他们把这个新粒子叫做τ介子。直到1957年,才搞清楚这两种粒子不过是同一粒子不同的态——正型和负型,最后统称为K介子。在20世纪50年代初,宇宙射线物理学家还发现过另一种粒子,很像是带正电的质子的中性兄弟,他们称之为λ。
在这一混乱当中,有一件强有力的新工具立下了汗马功劳。在这以前,大多数发现都是由宇宙射线物理学家在云室中通过追寻粒子轨迹而作出的。但是要回答现在提出的问题,粒子物理学家需要比云室能够提供的更多的详细数据。就在此时,粒子加速器登场了。这些强大的机器可以提供均匀受控的高能粒子——例如电子或质子或π介子。它们相互撞击,通过追踪撞击结果,可以获得大量有关粒子特性的精确细节。实际上,物理学家运用加速器和粒子检测器可以做两类实验:散射实验和粒子生成实验。
在散射实验中,实验者跟踪粒子的散射情况来寻找有关核的信息:数目、方向和角度。从加速器出来的能量越高,结构的聚焦度越好。利用这一技术可以使科学家探讨核的组成——质子和中子是怎样结合在一起的?它们是怎样挤在一个核内,并且保持结合状态的?如果有更高的能量,实验者就可以探测到更深的地方,看看质子和中子的各个部分是怎样结合在一起的。
粒子加速器和探测器的第二种用途是发现新的粒子,这一用途很快就初见成效——到了1949年,加州伯克利的科学家们用大型同步加速器分离出了中性的π介子,这是用加速器找到而不是从宇宙射线中找到的第一个新粒子。这台加速器是在劳伦斯领导下建造的。
1955年的秋天,塞格雷(Emilio Segrè,1905—1989)和张伯伦(Owen Chamberlain,1920—2006)成功地发现了带负电的反质子,质子的反物质孪生子。从1932年8月2日安德森发现电子的孪生子——正电子,到现在差不多过去了25年。质子是在伯克利加州大学新建的质子加速器上加速,并以60亿电子伏的能量(用一束能量诱导反质子出现的最低能态)向铜靶冲击。
20世纪50和60年代,伯克利、布鲁克海文(在纽约州的长岛),斯坦福、费米实验室(在芝加哥附近)和欧洲核子研究中心(简称CERN,在日内瓦)的加速器发现的一大群新亚原子粒子充斥科学杂志。物理学家发现的粒子越多,他们找到未发现粒子的证据也越多,往往下一个角落里的粒子有可能更难以发现。
加速器的能量越高,物理学家就可以更深地进入原子核结构,从而越有可能裂解下一层次的粒子。劳伦斯1949年的同步回旋加速器得到的是100兆电子伏(MeV)的粒子束。到了20世纪90年代,费米实验室的万亿电子伏加速器可以把它的能量抬高到1万亿电子伏(TeV)。
实验者还发展了大量的设备以获得特殊的信息——不同类型的探测器,不同种类和不同能量的“子弹”,以寻找粒子的寿命、衰减方式等。(所有的新粒子都是非常不稳定的,很快就会转变成其他的粒子。)数据铺天盖地而来。
粒子物理学似乎正在向完全无序和混乱的方向走去。
原子核的结构
与此同时,两位物理学家正在用不同的方法探究原子核。一位是戈佩特·梅耶,1930年她在格丁根大学完成博士论文,同年与美国物理学家乔·梅耶结婚。结婚不久,迈耶夫妇迁到美国,乔·梅耶在约翰·霍普金斯大学找到了一份工作。这时美国正处于大萧条的初期,找工作不是一件容易的事情,而戈佩特·梅耶的领域是量子物理学,在美国尚未得到充分认识。
不允许亲属同时任职的校规不利于她获取职务,也有可能为偏见找到一个借口,她不能够在这所大学里找到带薪岗位。取而代之的是,约翰·霍普金斯大学给了她一个“自愿合作者”的岗位,一种临时研究者的身份,只有一点点薪水。后来她又在其他几所大学教书,都是无薪的。其中包括哥伦比亚大学、沙拉·劳伦斯学院、芝加哥大学、恩利科·费米核研究所。她还在曼哈顿工程中担任研究科学家,和泰勒一起工作,到阿贡国家实验室当高级物理学家。这戈佩特-梅耶是赢得诺贝尔奖物理学奖的第一位美国妇女(也是历史上第二位获得诺贝尔状的妇女)。时正值犹太科学家纷纷逃亡的年代,因为他们在国内已被剥夺公民权利,为了躲避德国与法西斯意大利的大屠杀,许多人来到了美国。结果,像戈佩特-梅耶和费恩曼这样的年轻科学家有机会在他们的领域里最杰出的一些科学家面前亮相,特别是在纽约和芝加哥。
戈佩特·梅耶在芝加哥附近的阿贡国家实验室的身份是半日制研究人员,她开始研究原子核和稳定同位素的结构,稳定同位素即使在放射性衰变的过程中也不会分裂。她通过与芝加哥大学的实验物理学家合作取得了阿贡回旋加速器的经验数据。她收集和分析统计资料,并且得出结论,认为质子或中子的某些数目似乎与稳定同位素一致,特别是2、20、28、50、82和126,她称之为“幻数”。经过进一步研究,她发表了一个假说,大意是说:原子核中的粒子就像电子那样,在壳层中围绕着中心旋转,这些壳层就“像洋葱的精致外壳,中心没有东西”。
与费米的一次谈话启发了她想到自旋轨道耦合,于是她直觉地看到了她的幻数和核结构之间的关系。自旋轨道耦合涉及沿轴旋转的质子和中子,有的顺时针旋转,有的逆时针旋转。某一自旋方向能量略微小些,这一差别可以解释幻数。她的结论是,原子核是由一层层质子一中子壳层组成,靠复杂的作用力保持各自的位置。1950年戈佩特·梅耶发表了两篇论文讨论她的理论。这一年晚些时候,她访问了詹森(Hans Jensen,1907—1973),詹森也同时提出了原子核的壳层理论。他们决定合作写一本书,详细说明原子核的结构。1960年,戈佩特·梅耶成为圣地亚哥加州大学物理学教授。1963年詹森、戈佩特·梅耶和维格纳(Eugene Paul Wigner,1902—1995)一起分享诺贝尔物理学奖。
夸克的领域
要穿越混杂的亚原子粒子堆找到出路可不是件容易的事情,但是有一位身手不凡的物理学家却因打通这一路径而著名——他天才地洞察这片地貌,富有洞察力地把它描绘了出来,又用古怪的名字和文学性的比喻刻画这一诡异多端的踪迹。
盖尔曼(Murray Gell—Mann,1929—)出生于纽约市,他父亲来自奥地利,在纽约安了家。他在15岁生日那天进入耶鲁大学,仅此就意味深长。他21岁从麻省理工学院获得博士学位,在芝加哥进一步跟随费米做研究工作之后,27岁时被加州理工学院聘为教授。他具有犀利的头脑、高度不凡的兴趣和语言天赋(能流利地说多种语言,包括斯瓦希里语)。
在盖尔曼到达加州理工学院时,他已经深深沉浸于粒子物理学的丛林之中。除了查德威克的中子、狄拉克的正电子和泡利的中微子以外,汤川还假设了介子——介子被发现了很多:有安德森的μ介子,后来叫做μ子,因为发现它不是介子;而鲍威尔的π介子才是汤川的强力携带者。到了20世纪50年代还有K介子,比较重,大约为质子质量的一半。不久以后,比质子还要重的粒子也开始陆续被发现——这些重粒子叫做超子。
20世纪so年代,盖尔曼对K介子和超子特别感兴趣。他认为,这些粒子是由强相互作用产生的,按理也应该被强相互作用分解。但是情况恰恰不是这样,相反,它们会被弱相互作用分解(放射性辐射中的相互作用就是证据)。
早在19世纪90年代,当玛丽·居里和皮埃尔·居里开始研究放射性时,他们曾小心翼翼地测量神秘的“β射线”辐射(核里释放出的电子)的结果,除了贝克勒尔这些同事,几乎未曾有人听说过此事。但是到了20世纪50年代,关于放射性和控制它的弱相互作用已经广为人知。弱相互作用比大家熟悉的电磁相互作用要弱一千倍,并且比起把核粒子束缚在一起的强相互作用来更弱。弱相互作用已经成为理解得很透彻的现象,或者至少大多数物理学家是这样想的。
有一个事实却难以理解。按理说,非常弱而且较慢的弱相互作用应该不会超过更快的强相互作用。根据已有知识,K介子应该通过强相互作用衰变。但它们却不是这样,它们只是通过弱相互作用衰变,这一事实对于粒子物理学家来说,的确非常奇怪,结果他们开始把K介子和超子称为“奇异粒子”。
关注奇异性
于是在20世纪50年代初期,盖尔曼开始沉浸于奇异性问题。与此同时,日本物理学家中野董夫(Tokyo.Nakano)和西岛和彦(Kasuhiko Nishijima)也各自沿着同样的思路得到了类似的结论。在探索亚粒子时,盖尔曼开始成组地思考,而不是分别对待它们。例如,如果你关注中子和质子的特性,就会发现它们在每个方面都惊人地相似,除了一组带正电,一组中性。盖尔曼发现,如果你忽略亚粒子的电荷,原子核内的大多数亚粒子似乎就能分成两三个小组。
于是,盖尔曼根据除电荷以外的所有特性,把已知粒子分成小组,然后,按照每个组所有成员的总电荷,给每个组指定一个电荷中心。例如,中子一质子组的电荷中心为+1/2(由于这个小组的总电荷是+1,成员为2)。但是对于K介子和超子,很奇怪,电荷中心不像别的小组那样在中心,而是偏心的。盖尔曼发现,他可以测量偏心的大小,并且用一个数表示偏心的程度——这个数就叫“奇异数”。质子和中子的奇异数为0,因为它们完全不偏心。但是他发现有些粒子的奇异数是+1、-1,甚至-2。
并且,盖尔曼还注意到了所有粒子相互作用的模式:在任何相互作用中,所有粒子的总奇异数恒为常数。也就是说,在相互作用的前后它都是相同的。物理学家喜欢这一点,因为它显示了某种对称性的存在(自然界常常这样表现,所以这些结果看来是可以接受的)。相互作用中的奇异数守恒也可以定量描述(物理学家总是喜欢这样——因为定量表述比主观观察更容易验证)。再有,盖尔曼的观察可以用于解释奇异粒子意想不到的长寿。盖尔曼和中野董夫-西岛和彦小组都在1953年发表了他们关于这一思路的论文。
然而,弱相互作用还有一些谜团仍然没有得到解释——1956年的一天午饭后,杨振宁(Chen Ning Yang,1922—)和李政道(Tsung Dao Lee,1926—)在纽约市的白玫瑰餐馆聊天时谈到了这些谜团。当这两位长期合作的伙伴交谈时,他们开始暗自猜测以前从未有人想过的弱力问题。
左手世界
1922年,杨振宁出生于中国合肥,23岁时到美国,欲拜费米为师。当他抵达纽约的哥伦比亚大学时却发现费米已经去了芝加哥大学,于是他不慌不忙追到芝加哥,在这里,他跟随费米学习,1948年取得博士学位。也就是在这里,他遇到了李政道,其实,他们在中国时早就认识。1956年,杨振宁已经颇有声望,因为在1954年他和米尔斯(Robert Mills,1927—1999)提出了当时叫做杨-米尔斯规范不变场的理论,为量子场论奠定了基础。
李政道1926年出生于上海,1946年赴美国念研究生课程——他当时甚至还没有读完大学本科。芝加哥大学是唯一一所允许他人学的大学:这对李政道来说实在是幸运,因为这里有一些当时最杰出的物理学大师。他抓住有利的条件努力深造,1950年获得了博士学位,然后在氢弹设计师泰勒手下工作。
李政道、杨振宁后来又在新泽西的普林斯顿高等研究所共事过一段时间,然后杨振宁留下在1955年成为物理学教授,而李政道在1953年接受了哥伦比亚大学的职务。纽约离新泽西不远,所以他们两人往往是每个星期聚会一次,交换意见。
李政道(左)和杨振宁那个特殊的下午在白玫瑰餐馆谈话的主题是所谓K介子的“奇异粒子”,它似乎有两种不同的衰变方式——一种是右手方式,另一种是左手方式。
一般来说,这种情况不应该发生——其他各种粒子并不发生这种情况。K介子衰变的方式似乎违反了重要的物理学原理:宇称守恒定律。宇称守恒定律和能量守恒定律、物质守恒定律一样,在预言自然界行为时似乎向来正确。
设想你站在镜子前面,你的右边在镜像里成了左边。如果你的头发往右边分,在镜子里看上去却是往左边分,现在想象把像的其余部分倒过来,头部变底部,前面变后面。宇称守恒定律说的是,如果你采用一个系统,使其中的每件东西都以这种方式发生转换,这一系统将展现完全相同的行为。
宇称有两种可能值:奇和偶。宇称守恒定律说的是,如果你在反应或变化之前是奇宇称,则在结束时也应该是奇宇称。也就是说,当粒子之间相互作用形成新粒子时,在方程式两侧应该宇称相同。
K介子的问题在于:当它们衰变时,有时衰变成两个π介子,两个都是奇宇称(加在一起就成了偶宇称),有时它们又会衰变成三个π介子(加在一起又成了奇宇称)。就好像你照镜子,你的右手的像反射回来有时在右边,有时在左边。方程式的两侧本来应该完全互为镜像,但是它们却并不总是这样。物理学家试图解释这一现象,于是提出会不会是有两种不同类型的K介子,一种是奇宇称,一种是偶宇称。但是杨振宁和李政道认为这也许不是正确的解答,这些介子在其他每个方面都完全相同,也许有某些原因在起作用。
李政道和杨振宁互相问道,有没有可能宇称守恒不适用于这些“奇异粒子”?也许它们实际上就是一种K介子,而不是两种。也许宇称守恒似乎不被遵守的原因是,这一原理不适用于弱相互作用。他们知道,从来没有人检验过这一可能性,于是他们开始思考哪些情况可以测试这一前提。这就是所谓的“宇称的失效”,不是整体废黜,只是在一个领域里的失效,这个领域就是弱相互作用。
两人随即起草一篇论文,题为《弱力中宇称守恒的问题》,不久后发表。在这篇论文里,他们回溯了一系列反应并且考察有哪些实验暗示在弱力中不遵守宇称(即镜像对称)的可能性。怎样才能检验这一思想?他们认为,如果你能考察β衰变(弱相互作用的一个领域)中的自旋核所发射的电子的方向,例如,可以看到电子偏爱哪一个方向,就能给出答案。
这一理论,是李、杨的头脑里通过合作而产生的。但是在科学中一个理论是否有价值,全在于它是否经得起实验的检验。如果经得起,它就开拓成为一个大的研究领域,产生富有挑战性的新问题,并且让旧思想寿终正寝。
吴健雄,她的实验证明李、杨有关宇称守恒的思想是正确的。李、杨的实验搭档吴健雄(Chien-Shiung Wu,1912—1997)立即付诸行动。吴健雄是哥伦比亚大学的物理学教授,李政道的同事。她是一位杰出的、意志坚强的实验物理学家,专业正是放射性衰变。她以对学生严格和苛刻而出名,对自己的工作更是苛刻,精力充沛。这一次吴健雄做的实验非常及时复杂且干净利落。她决定用钴60,这种放射性物质会衰变成镍核、中微子和正电子。吴健雄需要用仪器“监视”的是正电子从核中逸出时的自旋,但是她必须确保钴60样品的核都是沿同一方向旋转,这样核的旋转才不会影响被辐射粒子的自旋。为了做到这一点,吴健雄设计了一个非常复杂的实验,要用到华盛顿特区美国标准局的低温设备,把钴的温度降至非常低,只高于绝对零度一点点。
到了1957年初,吴健雄开始获得惊人的结果。在新年过后第一个星期的工作午餐中,李政道对他的同事说:“吴健雄来了电话,说她的原始数据表明有重大效应!”不久吴健雄的结果出来了——宇称不适用于弱力。这年年底,李政道和杨振宁由于他们的远见卓识赢得了诺贝尔奖。
然而,许多物理学家并不高兴。亚原子世界,不像无序的日常世界,似乎总得显露某种奇异的精致性,对称性就是其中的一种。现在对称性似乎是一种时有时无的现象。
泡利曾经不快地讽刺说:“我不能相信上帝是弱的左撇子”。(他并不是认为左撇子不好,而是因为他看到的大自然总是不偏不倚的。)泡利说出了他的不安,实际上许多其他物理学家也有同感。许多人开始怀疑其他守恒定律是不是也有问题。如果宇称不始终如一,那么也许其他的守恒定律也会存在同样问题,也许对称性根本不应该看成是一个普遍适用的原理。李政道、杨振宁和吴健雄提出了许多问题,但是对于那些致力于为未知问题寻找答案的科学家来说,好科学不仅要回答问题,使零碎的片段相互整合,而且要提出新的问题。
与众不同的夸克
与此同时,在加州,盖尔曼也在忙碌。一个伟大的理论家具有在混乱中进行综合和理清思路的特殊才能,这正是盖尔曼所有的。有许多事情需要整理和解释,其中包括粒子那令人难以置信的庞大数目(为什么如此之多?)以及明显的家族现象(是什么机制或者原理造成的?)
在杨振宁、李政道和吴健雄工作的基础上,盖尔曼提炼出了一些想法,一种分类系统,发表在20世纪60年代初一系列论文中。他称他的系统为“八重法”,这个名词是从中国的佛经里借用的。(并不是像有些热心者所认为的那样,盖尔曼想要暗示物理学已经变得神秘化或哲学化。他只不过是需要一个名字来表示一个概念,这个概念对于语言世界是如此之新,以致必须重新发明一个才行。大多数希腊字母都已经用于命名粒子,所以他只得从他最感兴趣的事情中找一个名字。)
盖尔曼的思路是这样的:他已经注意到,许多亚原子粒子(包括介子、质子和中子)都是以家族出现,两三成组。介子有三个,K介子有两对,质子有一对(质子和反质子),等等,形成密切相关的家族,彼此非常相似。实际上,这些家族成员之间的相似性远超过它们之间的差别性,各种情况唯一的差别在于电荷和质量。而质量差别之小(只有几MeV),显然是由于电荷的差别引起的。换句话说,这些粒子很可能是等同的,因为质量的差别有可能仅仅是电荷的差别引起的。因此,盖尔曼说,如果你把这些家族中的每一个成员都看成是具有不同特性的一个粒子——这些粒子具有“多重性”,有什么不可以呢?这就为如何看待原子核里发现的粒子的多样性,提供了富有成效的新思路。
其次,他注意到强力完全不顾及电荷。不管粒子是中性还是带负电或带正电,效果都一样,它以同样的强度作用于质子和反质子。强力对中性π介子、它的带正电的姐妹或者带负电的兄弟没有什么区别,它们就像是等边三角形的三个边。
盖尔曼认为,奇异粒子的奇异性和多重性有一定联系。奇怪的K介子不像三个一组的丌介子,它们似乎是形成了两对。他肯定这里还有某种没有发现的更深层次的对称性在起作用,并不只是偶然相关。
20世纪60年代末,数学家不久前刚刚重新发现了挪威数学家李(Marius Sophus Lie,1842—1899)的工作,李曾经提出过一种抽象的表示方法,叫做“群论”。盖尔曼认识到有一种李群——SU(3),或者3维特殊幺正群——似乎适用于介子和重子。[伦敦帝国学院的尼曼(Yuval Ne’eman,1925—2006)也提出过同样的想法。]盖尔曼用群作为模子,把介子和重子按它们的电荷与奇异性排列在一起。重子共有八个,正好填满了图像,可是介子只有七个。
因此基于应该有第八个介子才能填满这一图像这一特点,盖尔曼预言它的存在,这类似于门捷列夫1869年提出元素周期表时,曾预言过几种还没有被发现的元素的存在。特别是,盖尔曼预言了一种他所谓的“Ω-”粒子,事实证明他是正确的。1964年果然发现了这样的粒子,并且后来无数次地观察到它。它的反粒子——反Ω-(或者Ω+)也在1971年被发现。
于是“八重法”诞生了,粒子的丛林得到了整治,至少比以前有序得多。
但是盖尔曼还有更多的打算。即使有了“八重法”这一新秩序,他认为必定还有某种更深刻和更简单的秩序,一定还有某种粒子比以前人们设想的更为基本。盖尔曼意识到,物理学家正在做的事情,就像是正在关注物质中的分子,并且试图理解其复杂性,却没有意识到它们是由原子组成这一事实(这正像道尔顿之前的化学家)。重子(中子和质子)应该是由某种更小的东西组成——但那是些什么东西呢?
1963年3月25日星期一,在纽约市哥伦比亚大学的教工俱乐部里,午饭过后开始出现了答案。(看来物理学家在吃饭时往往可以思考出许多东西!)盖尔曼正在哥伦比亚访问,他做了一系列关于“八重法”及其他问题的演讲,受到热烈欢迎。主邀大学的一些理论家,其中包括塞尔伯(Robert Serber,1909—1997),邀请他吃饭。塞尔伯举止安详,曾经在伯克利与奥本海默一起合作过,后来又在洛斯阿拉莫斯和盖尔曼一起工作过。一般来说,他宁愿在后台工作,但是这一天他有一个问题:“粒子三个一组是怎么回事,是三重态吗?”
盖尔曼立即回答:“那不过是可笑的托词!”李政道也在场,补充道:“一个可怕的思想。”于是,盖尔曼开始在餐巾纸上乱涂:要使三重态有效,粒子必须要有分数电荷,这一现象在自然界中从未观察到过,实际上是不可想象的。粒子必须是+2/3,-1/3,-1/3。
但是后来他开始更多地思考这个问题。只要一个粒子在自然界不以分数电荷出现,这个想法也许就不那么古怪了。如果真正基本的核粒子,基本强子,都是不可观测的,不能从重子和介子里跑出来,那么就无法个别观察;如果它永远被禁锢在自然的质子、中子、兀介子等物理学家在自然界发现的各种粒子里面,那么它也许就是可能的。盖尔曼在下一次的演讲中讲了这一思想。回到加州理工学院,他进一步对此进行加工,并且在和他以前的论文指导老师外斯柯夫(Victor Weisskopf,1908—2002)通电话时提到了这件事。外斯柯夫正在瑞士日内瓦CERN担任主任。盖尔曼对他说,也许重子和介子都是由带分数电荷的粒子组成的。外斯柯夫没当一回事,他立即提醒:“请严肃点,这是国际长途。”
然而盖尔曼是严肃的。1964年他提出,存在携带分数电荷的一组古怪粒子。他又一次采用了怪诞的命名方法,称之为夸克,这是引自乔伊斯(James Joyce,1882—1941)怪诞的诗集《芬尼根彻夜祭》(Finnegans Wake)中的一句成语:“三声夸克,鼓励马克!”携带2/3正电荷的粒子,他称为上夸克,另外两个他分别给予下夸克和奇异夸克的称呼。质子是由两个上夸克和一个下夸克组成,总电荷为+1。中子是由两个下夸克和一个上夸克组成,结果是不带电。在他介绍这一思想的两页论文中,最后一句话是感谢塞尔伯启发了这些思想。
与盖尔曼想到夸克的同时,另一位年轻的物理学家也沿着同样的思路在做这件事情,他的名字叫兹韦格(George Zweig,1937—)。兹韦格是一位实验物理学家,当时正在CERN工作,他把这些粒子看成是真实具体的粒子,而不是像盖尔曼所认为的只是抽象结构,他称之为王牌(aces)。由于兹韦格比较年轻,不大知名,他未能成功发表他的革命性思想(甚至盖尔曼也是选择向一份很少有人知道的杂志投稿,以免退回)。但是,当盖尔曼得知兹韦格曾经就这一课题在CERN写过一篇内部文章后,他总是肯定兹韦格的功绩,尽管他对兹韦格的“混凝土块模型”持嘲笑态度。
物理学家终于得到了这样的结论:如果真有盖尔曼提出的奇异夸克,它一定是成对的。于是,他们开始寻找所谓的“粲夸克”,粲夸克是奇异夸克的伴侣。令人惊奇的是,产生这一想法的不止一个人,又是两个不同研究单位的研究者:布鲁克海文国家实验室的丁肇中(Samuel Chao Chung Ting,1936—)和SLAC的里克特(Burton Richter,1931—)。考虑到这样的事实:粒子实验往往需要数月、有时数年的计划,并且需要大量科学家的投入才能进行,而这两个单位做同样课题的人互相并不了解,这种可能性是极其罕见的。然而,就在1974年11月丁肇中出现在SLAC准备宣布J粒子诞生的那一天,里克特也宣布他和他的小组发现了他所谓的ψ介子。丁肇中惊呆了。经过交流,他们发现两个小组完全独立地发现了同一个粒子,最后取名为J/ψ介子。随后不久,研究者们认识到,由于J/ψ介子所具有的特性,如果粲夸克不存在,它也不会存在。于是丁肇中和里克特不仅独立地发现了一种新粒子,而且为粲夸克的存在找到了证据。他们两人由于这些发现分享了1976年诺贝尔物理学奖。
味和色
正当盖尔曼企图使亚原子粒子混杂的大家族变得有序时,新粒子的数目还在持续增加。不过,这些新粒子也仍然适合他已经勾画的基本结构。
一种真正基本、无结构和不可分的新粒子观出现了:这些粒子分成基本的两种:夸克和轻子。然而,每种有三个类型(叫做味)。(味这个名称又一次显示物理学家的幽默感,实际上与味道毫不相干。)
轻子的三味是电子(科学家早就知道它了)、μ子(或μ介子)和τ子(或r介子)。轻子的每一味有四个成员,例如:电子、中微子、反电子和反中微子。
夸克稍微有些复杂,夸克的配对也可想成是不同的“味”——这个概念与轻子的味相似。于是,夸克的每个味也都有四个成员。例如,上/下味包括上夸克、下夸克、反上夸克和反下夸克。如果你想到夸克的配对与轻子三味的每一对类似,则夸克的三味是上/下夸克、奇异/粲夸克,还要有一对新的夸克才能填满这个表,它们是顶/底夸克。
轻子与夸克之间的一个关键性差异在于,夸克受到的是强力,而轻子不是。再有,轻子具有整数电荷或者不带电荷,不能合并。夸克则具有分数电荷,显然只能以复合的方式存在。
20世纪70年代关于夸克仍然有一个大问题——如果永远不能把夸克从紧密结合的状态中分离出来,那么是什么力量把它们束缚得如此之紧呢?
所有物理学家最后都同意这样一个有力的思想,那就是:夸克的每一个不同的味来自轻子不具有的三种不同属性。这类属性盏尔曼称之为“色”,三种不同的色分别为红、蓝和绿。这些名字只不过是一些比喻;据我们所知,夸克并不真的具有颜色。
但是,当夸克三个三个分成组时,它们就结合在一起了。红、蓝和绿互相抵消,变成无色(就像色盘旋转时,上面的三原色合成为白色一样)。
当然,夸克也会结合成对形成介子,例如,红色夸克和反红色夸克结合,红色与反红色互相抵消,得到的结果是无色。
就这样,色成功地解释了夸克是怎样两两结合形成介子的,又是如何三三结合形成重子的。研究这个过程——不同颜色的夸克结合产生无色——就叫做量子色动力学(QCD)。量子色动力学证明,夸克和反夸克的不同组合可以获得色中性。
但是颜色怎样才能转移呢?是什么信使粒子像光子作用于电磁力那样传递色力呢?物理学家把这样的粒子称为胶子,它携带两种类型的颜色:颜色(红、绿或蓝)及其反颜色。当这些胶子被夸克发射或者吸收时,它们改变夸克的颜色。这些胶子不停地在夸克之间来回移动就提供了强大的力量把夸克粘在一起,当两个夸克互相移开时,这个力加大,互相靠近时,力减小(这一特性正好和电磁力相反)。你试试把手指放在橡筋圈里,张开手指,手指间的力增加。色力的线就像橡筋圈里橡皮的筋条,收拢手指,张力减小。这和胶子携带的强核力非常相似。
这幅复杂的原子模型——这两章非常简短地描述了它的许多部分以及它们怎样紧密结合——已经被物理学家广泛接受。在各个粒子——强子和轻子以及它们的下属——之外,还有四种力在原子里起作用:强力(把核绑在一起)、弱力(放射性背后的力)、电磁力(管辖电荷)以及引力(只在长距离起作用,在原子内部可以忽略不计)。
在原子内部,信使粒子起的作用是传送强力、弱力和电磁力。后来,物理学家把这些信使称为“基本玻色子”:其中有负责电磁力的光子,负责弱力的W+,w-和Z0和负责强力的八个胶子。这些基本玻色子都是基本粒子——也就是说,它们不能衰变成更小的粒子。
现在我们有了这些夸克,那种认为质子和中子是被π介子绑在一起的旧思想看来是不完全正确的。正如我们已经看到的,质子和中子是由夸克组成的,这些夸克之间的信使叫做胶子——是一种玻色子,它的运作处于比20世纪早些时候认识到的更为基本的层次上。
整个图像——包括所有六种类型的夸克、六种类型的轻子(电子、μ子、τ子、电子中微子、μ子中微子和τ子中微子)和四个玻色子(力的载荷者)——组成了所谓的标准模型。然而,直到1995年,有一个重要的粒子还没有找到:顶夸克。在长达20年的实验中,芝加哥附近的费米实验室有500多人一直在寻找这一失踪的粒子。最后他们成功了,这一点确信无疑,因为两个实验设计成果互相补充和互相验证。
标准模型中的基本粒子夸克上粲顶胶子下奇异底光子轻子电子
中微子μ子
中微子τ子
中微子W玻色子
电子μ子τ子Z玻色子力的携带者
这一工程是今天解决大型科学问题需要庞大合作和复杂设备的一个优秀案例,相比过去,那时只看到个别科学家在单枪匹马地工作。这正是过去一百年来“从事科学工作”的巨大变化之一。个人贡献仍然非常重要,但是在某些学科中——特别是粒子物理学——团队合作起到了关键性的作用。
作为团队合作的结果,标准模型十年前就存在的一个最有威胁性的问题——失踪的顶夸克和有关中微子的问题——现在都解决了。你可能看到,标准模型仍然非常复杂——往往被看成是科学模型中的一个败笔。物理学家倾向于认为,自然界的规则是简单而不是复杂的,并且无论在何处,当他们全面探讨这一思想时,大自然都证明,它宁可选择简单性。但在万物的核心深处,为什么事情会变得如此复杂?有些物理学家认为,这正是因为我们还没有达到真正统一和更简单的宇宙观。
宏伟的统一
然而,还是有人尝试对这一世界建立更简单的看法。爱因斯坦把他的晚年花在尝试建立大统一场论(GUT),把自然界各种力联合在一起,但是他没有成功。
20世纪60年代,温伯格(Steven Weinberg,1933—)和萨拉姆(Abdus Salam,1926—1996)独立发展了电弱相互作用理论,把电磁相互作用理论与弱相互作用理论结合在一起;而格拉肖(Sheldon Glashow,1932—)在1968年对这一理论作了改进。格拉肖曾经和温伯格一起在布朗克理科中学上学。
他们的理论为这两种相互作用搭起了数学支架,人们为之欢呼,把它看成是通向爱因斯坦曾经寻找的大统一理论成功的第一步。尽管这一理论还没有完全被证明是正确的,但已经有足够的实验支持,使他们三个人获得了1979年诺贝尔物理学奖。后来在1983年,鲁比亚和范德米尔(Simon van der Meet,1925—)成功地发现了电弱理论所预言的W粒子(W+,W-和Z0),这正是电弱理论需要的最后验证。
从那时起,针对达到所有四种力的统一理论的各种尝试加速进行,而大统一理论的探讨打开了探索宇宙起源过程的许多道路。宇宙起源过程指的是宇宙存在的最初几秒,以及随之发生的事情。最近50年来,粒子物理学的突破在物理学家和宇宙学家之间产生了极其丰富的交叉成果,我们将会在下一章看到,每一方都在对方的领域里激发出前沿理论和实验,并且对其作出了贡献。不过还是让我们先来介绍20世纪下半叶和21世纪初,天文学家和宇宙学家对宇宙及各种天体作出新发现的一些途径。
恒星、星系、宇宙及其起源
据我们所知,自从有人类存在以来,人们就热衷于注视夜空中遥远的天体——观察它们、了解它们的习性、总结出它们的规律并且对它们的排列赋予某种含义。如果你像许多先人做过的那样,在晴夜里躺在山顶牧场的草地上,你就可以看到,天空呈现出无以述说的复杂性。古代巴比伦人和埃及人只靠少量工具,就进行了许多复杂的观测,但是一旦伽利略在17世纪把望远镜用于观察恒星和行星时,有关我们之外世界的信息就开始成倍增加。伽利略发现,行星之一的木星有卫星;后来证实,另一颗行星土星有光环。当望远镜改进后,天文学家开始认出新的结构,并且发现,在我们的太阳系中有更多的行星。到了19世纪,他们的工具箱中又增加了摄影术和光谱术(用于研究辐射源发射的能量分布,把光线分成各种成分,并按波长次序排列)。
但是到了20世纪,理论和实验之间不断的交互作用以及天文学和物理学的联姻,完全改变了我们对宇宙广阔领域的理解。在20世纪上半叶,爱因斯坦相对论教导我们说,我们生活在一个时空连续统一体中,它的形状受到物体质量的影响。20世纪最初的几十年,量子理论和核物理学的一系列进展为宇宙起源及其早期历史准备了特殊的新思想。与此同时,观测天空所用仪器和方法的进展,促使以前从未梦想到的新型天体终被发现,其中包括其他恒星周围的行星、恒星“苗圃”、远距离星系等。天文学、天体物理学和宇宙学(研究宇宙的起源和结构)比以往任何时候都更受有胆有识人士的青睐。正如莎士比亚笔下的哈姆雷特告诫他的朋友时所说:“霍拉提奥,在天上和地下有比你的哲学所梦想到的更多的东西。”这句话就此成为20世纪后半叶天文学家和物理学家的座右铭。
比梦想到的更多
在20世纪50年代初,天文学家桑达奇(Allan Sandage,1926—)夜复一夜地坐着升降机登上海尔天文台圆屋顶下的一个高台,坐在被称为主焦笼的精巧机构里面,这是200英寸望远镜的观测点。海尔天文台坐落在加州帕萨迪纳附近的帕洛马山上,山顶的冷空气使他的手指和脚趾都冻僵了;但桑达奇珍视他的独处和处于时间机器的驾驶舱里的感觉。这就是他与星星为伴的夜生活,他从未错过一次机会。
桑达奇和他的同事们可以任意使用当时光学天文学里最好的设备。200英寸(五米)海尔望远镜刚刚在1948年完工,桑达奇曾经在威尔逊山附近出色的100英寸望远镜前,在修玛森(Milton Humason,1891—1972)的指导下受过训练。后来他找到了一份工作,担任星系测量大师哈勃的助手,从此开始投身于持续终生的事业中。
哈勃曾经成功地测量了邻近星系的距离,他承担了一项长期计划,目的是测量更远星系的距离,并且最后测量宇宙的大小。他的发现叫做哈勃定律,这个定律说的是,星系越远,它发出的光线向光谱的红端位移得越多,也就是说,它离开我们的速率越快。这一光线的“红移”现象实际上是一种多普勒效应,就像火车呼啸而过,或者超速行驶的汽车离去时的喇叭声——当宇宙膨胀时星系互相远离,由于星系的运动使光线产生红移。
桑达奇的任务是拍摄星系,搜寻星系里面的可变星,以便测量星系之间的距离。当哈勃在1953年去世时,桑达奇的工作才刚刚开始,但他继承了哈勃在200英寸望远镜跟前的工作时间和他的所有图表与记录,全力以赴投身于对广阔时空的测量上。正如英国光谱学家希尔(Leonard Searle)所说:“桑达奇专注得如此不可思议。他是一位非凡的科学家,他全身心投入到工作中,他看来是一个狂热的人。”
许多年后,基于对某些球形星团光谱特性的考察,他最终得出结论,这些星团和整个宇宙的年龄不超过250亿年。现在天文学家用桑达奇提出的这个尺度来测量各种星系的距离,从几百万光年到几十亿光年。
对于观测天文学家来说,这是一个激动人心的时代。新的证据不断出现,天体物理学家和其他学科的同事们经常探讨的问题——例如,中微子真的存在吗?恒星爆炸时会发生什么?恒星是如何演化的?它们的内部深处是怎样的?只有到了现在,由于科学家获得了新工具,并且找到了新方法来运用旧工具,我们才有可能开始找到某些答案。
观测的新方法
每当我们从地球向太空凝视时,即使是通过位于高山之巅的望远镜并远离城市的灯光,也总有大气层的遮挡,因而扰乱且模糊了视觉。许多天体有可能看不清楚,某些处于可见光范围之外的辐射有可能完全观测不到。但是随着太空火箭在1957年诞生,历史上第一次有可能从大气层外进行观测。
1962年6月,焦孔尼(Riceardo Giacconi,1931—)及其同事在探测火箭上搭载了一台x射线探测器,看看它有无可能找到月亮上荧光的证据。这颗从新墨西哥的怀特桑兹发射的火箭,第一次发现了宇宙X射线源天蝎座X-1(这个名字表示它是在天蝎座发现的第一颗X射线源,天蝎座是部分位于银河系的南半球星座)。寻找一个处于电磁波谱不可见波段,例如x射线的天体,很像听到有人敲门,却看不见有人在门外,等你打开门,却又不知道谁在敲门。1967年,天文学家找到与天蝎座X一1配伍的可见天体,是一颗名叫V 818 Sco的变星。第二个X射线源金牛座X-1是1963年发现的,不久就认出它是巨蟹座星云,这是中国和日本天文学家在1054年观测到的超新星所遗留下的膨胀气体和尘埃组成的湍流云团。在这些发现之后,又进行了一系列火箭探测和气球探测,到了1970年,天文学家在我们的银河系中找到了25或30个X射线源。到了1970年12月,第一支X射线人造卫星轰隆隆发射上天,它发现了大量新的X射线源,大多数后来证明是双星系统(由两个相伴的星组成)。
1983年,美国国家航空和航天局(NASA)与荷兰和英国合作进行太空计划,发射红外天文学卫星(IRAS),普查整个天空(只差2%)的电磁波谱红外波段的红外源。IRAS装有液氦冷却的光学系统,连续勘查了近11个月,直到氦用完。数据在经过分析和整理之后,得到的IRAS观测目录非常广泛,其中包括织女星周围的尘埃外层,5颗新彗星和有关发射红外辐射的各种天体的广泛信息。
钱德拉和卢梭(Henry Norris Russel,1877-1957)正在谈话。美国1981年第一次发射的航天飞机,提供了一种把复杂的天文学观测站送入轨道的途径。美国国家航天局大型观测站系列中的第一项就是哈勃空间望远镜(HST),是1990年发射的。哈勃空间望远镜设计成能够窥视太空深处,在时间上可以追溯到遥远的过去,并且能够获得清晰度空前的图像。尽管哈勃空间望远镜出发时就有着明显的先天不足,但它还是发回了惊人的可视数据与信息丰富的图像——甚至还发回了无数与类星体、脉冲星、正在爆炸的星系、恒星的诞生、宇宙的年龄和大小等(这里只是列举了少数几项)有关的新信息。并且,哈勃空间望远镜被设计成能够对140亿光年前的原始星系进行探索,那时宇宙才刚刚诞生。它还能够对宇宙的大尺度结构进行深度红移研究。哈勃空间望远镜的分辨能力十倍于最好的地基望远镜,可以分辨近星场和星际大气的细节。它沿着地球上空380英里的轨道运行,最有希望在大尺度上对有关宇宙的各种问题给予明确的答案,包括它的大小和运动。遗憾的是,在它1990年发射后,发现有一块望远镜镜片存在缺陷,使几乎20年来一直在盼望得到它数据的天文学家大失所望。虽然望远镜仍然能够收集科学上有价值的图像,但它的模糊画面远不能满足计划的要求。不过航天飞机上的人员后来很好地完成了修理任务,不仅解决了这一问题,而且还完成了各种保养、维修和更新,使得哈勃空间望远镜的性能远远超过了原定计划。由于有了新的光学仪器,哈勃空间望远镜可以拍摄100亿至110亿光年远处的星星,保养和升级使它的寿命延长到了21世纪。
其他空间观测站也加入哈勃空间望远镜的队伍。康普顿7射线观测站(CGRO),特长是γ射线天文学,1991年发射,2000年完成任务。它携带了四台大型望远镜,有的大如小型汽车,每台都能在特定的能量范围内辨认7射线。这是因为,和所有的辐射一样,V射线只能是在与物质相互作用时才能检测到。因此康普顿γ射线观测站的探测器把探测到的射线转化成可见光的闪烁,再对闪烁进行计数和测量。γ射线在电磁波谱中是能量最大的辐射,从几万电子伏到几百亿电子伏。(相比之下,可见光只有几电子伏。)
在地面上完全不可能探测到宇宙γ射线,因为它不能穿透大气。但是在过去几十年里发现的许多最令人感兴趣的天体,包括类星体、脉冲星和中子星,都释放出大量能量,会产生7射线。天文学家希望通过康普顿γ射线观测站收集到的数据,对它们的结构和机制取得新的认识。科学家甚至想到,γ射线辐射也许是被黑洞吸入的物质发出的,通过这一辐射也许能够对消失前的物质有所了解。
他们还计划建立其他“大型观测站”,以便按电磁波谱的不同区域对宇宙进行快速扫描。也许今天美国宇航局最令人激动的观测站是钱德拉X射线观测站,这是美国宇航局大型观测站系列的另一部分。这个观测站是为了纪念理论物理学家钱德拉塞卡(SubrahmanyanChandrasekhar,1910—1995),一般称之为钱德拉。他出生于印度的拉合尔(现在属巴基斯坦),就学于剑桥大学的三一学院,1933年获博士学位,1953年成为美国公民。钱德拉是一位诺贝尔奖获得者,以其治学严谨和对白矮星的重要研究闻名于世,此外,他还研究了恒星的大气层、结构和动力学。
钱德拉X射线观测站1999年发射后,已经发回了许多清晰图片,作出了许多发现,其中包括第一次拍摄到了正在爆炸的恒星所发出的冲击波全景、白矮星发出的闪光和大星系吞噬小星系的情景。仅仅从太空航天飞机发射出去两个月,它就显示出围绕蟹状脉冲星的中心有一闪耀的环。脉冲星位于蟹状星云内,是超新星爆发后的残余。闪耀的环给科学家提供了脉冲星如何为整个星云供应能量的线索。
天文学家还知道,在银河系中心存在一个质量巨大的黑洞,但是他们从来没有在那个区域找到他们所希望的X射线辐射。钱德拉观测站在银河系中心附近发现一个微弱的X射线源,有可能正是长期寻找的信号。
钱德拉X射线观测站还发现在200万光年远处有一团气体呈漏斗状涌入巨大的黑洞,该气团比科学家预计的要冷得多。正如天文学家唐纳班(Harvey Tananbaum)所说:“钱德拉观测站教会我们去期望观测一切未曾想到过的天体,从太阳系的彗星和附近的白矮星到相距几十亿光年以外的黑洞。”
NASA大型观测站列表望远镜太空行动任务日期哈勃空间望远镜(HST)电磁波谱中的可见光区域以及近红外和紫外部分的天文学1990年;1999年任务延长康普顿γ射线观测站(CGRO)从天体发射的γ射线收集数据,这部分一般是宇宙中最强烈、能量极大的物理过程1991年;2000年退休钱德拉X射线观测站(CXO)观测光谱中的X射线区,研究类星体、黑洞和高温气体之类的天体1999年空间红外望远镜(SIRTF或者斯匹查空间望远镜)捕获被尾随地球轨道的太阳轨道大气阻截的热红外发射2003年詹姆斯·韦伯空间望远镜(JWST)大型红外优化望远镜,作为哈勃望远镜的继续2009年(计划)
在2002年里,钱德拉X射线观测站提供了两个星系碰撞的真实记录。由于甚至在我们的银河系中,类似这样的碰撞可能已经多次发生,钱德拉X射线观测站的图像也许对宇宙为什么变成现在这个样子,提供了新的见解。科学家从钱德拉X射线观测站的证据想到,名叫Arp 220的星系的大量新星可能就是这种巨大碰撞融合的结果。星系合并还发送出巨大的冲击波穿过太空的星系际区域,在融合的星系中心形成质量巨大的黑洞。天文学家从钱德拉x射线观测站的信息得出结论,融合已经发生了几千万年,这个时间在宇宙的尺度上并不算长。
2003年8月25日发射了另一台激动人心的观测站,空间红外望远镜[SIRTF,现在重新命名为斯匹查(Spitzer)空间望远镜]。斯匹查专门针对IRAS和ISO顾不上的内容,考察红外谱区,它是对巨型观测站(不包括下一代空间望远镜)的最权威的补充。技术上的最新进展应该可以保证这一观测站成为最大和最有成效的观测站之一。用上这样先进的红外探测器,人们预期可以完成复杂的大面积测绘,它的装备足以使它的扫描速度比任何其他空间船载的红外望远镜快上百万倍。斯匹查还应该能够帮助回答有关恒星和行星形成、类星体等高能天体的起源、星系的形成和演变,以及物质的分布等关键性问题。
星体内部发生了什么事情
贝特是第一流的核物理学家,曾经在他的祖国德国跟随索末菲学习,此外还到剑桥大学跟随过卢瑟福,到罗马跟随过费米。当希特勒上台掌权时,贝特离开德国到了美国,在那里参加原子弹的研制工作,但是他对科学的最大贡献是他在1938年提出的关于恒星内部过程和机制的理论。他运用的是对亚原子物理学的详尽知识和爱丁顿的结论:即恒星越大,内部的压力越大,温度也越高。
贝特的讨论由此开始,先是氢核(质子)和碳核,由此启动了一系列反应,最后导致碳核的重新组合和氦核(一个α粒子)的形成。也就是说,恒星发动机用氢作为燃料,用碳作为催化剂,排出的“灰烬”就是氮。由于类似太阳的恒星大部分都是由氢构成,它们大多都有足够的燃料维持几十亿年。贝特还勾画出了另一幅可能的情景,氢核直接组合在一起,(没有碳催化剂)经过几个步骤再形成氦,这个机制可以在更低的温度下发生。贝特由于太阳和恒星能量生成(他称之为聚变)的研究而获得1967年诺贝尔物理学奖。
1948年,伽莫夫对贝特的思想——核反应为恒星提供能量并且充当它们的辐射能源——发生了兴趣。他和贝特一样,也是经过正规训练的物理学家,但是他对天文学的兴趣从13岁就开始了,那时父亲送给了他一台望远镜。伽莫夫出生于俄罗斯,在欧洲几个大学学习过,在那里他与玻尔和卢瑟福共事过。20世纪30年代转到美国,与原子物理学家泰勒合作,开始在圣路易斯的乔治·华盛顿大学教书,随后决定留下。伽莫夫对此的进一步计算表明,当恒星在这一过程用完基本燃料氢后,星体将变热。他假设,我们的太阳不是逐渐变冷,而是缓慢地变热,最后将把地球上的生命烘烤摧毁,甚至最终把它们吞没。
以太空为基地的对太阳的研究肯定了贝特和伽莫夫的聚变推动恒星的思想,此外还发现了其他许多有关太阳的事实,其中包括由带电原子性粒子组成的太阳风的存在,它不断经过行星吹向太阳系的边缘。1973—1974年间,美国太空实验室空间站有三项太空行动,宇航员最初集中关注太阳,发回了有关太阳活动的75 000张照片,其中包括6张太阳耀斑(太阳能量的爆发性释放)。
星体演化:配恩-伽珀斯金
20世纪天文学家探讨的重大问题中,有一个就是“恒星的生命史是怎样的”。一旦得知恒星经历这样的过程:诞生、年轻时的炽热明亮、渐渐衰老、然后死亡,天文学家就迫切想要揭示其细节。在这些前沿探索者中,有一位妇女名叫配恩·伽珀斯金(Cecilia Payne-Gaposchkin,1900—1979),她在20世纪后半叶被公认为历史上最杰出的、当今最著名的女天文学家之一。
配恩出生于英国的温都沃,1919年获得奖学金进入剑桥大学,在那里受到爱丁顿的激励,投身于天文学。夏普勒邀请她参加哈佛学院天文台,她接受了邀请,在坎农(Annie Jump Cannon,1863—1941)的领导下从事光谱研究。坎农负责哈佛大量恒星光谱照片的分类整理工作。配恩在哈佛完成了博士论文《星体大气》,对于这篇论文,斯特拉夫(Otto Struve,1897—1963)评价为“历史上天文学中写得最好的博士论文”。配恩24岁时,综合了光谱数据和她自己的观测,推导出每一类光谱代表的温度以及恒星大气的成分。配恩是一位杰出的科学家,她喜欢把自己说成野外博物学家,善于“把以前认为是没有联系的各种事实收集在一起,并且看出它们中间的规则”。尽管她从不张扬自己,也从未想过要这样做,然而,她显示的特点却是一个伟大理论家的关键品质之一。
1934年,配恩与拾基·伽珀斯金(Sergei I.Gaposchkin,1898—1984)结婚。他是新近加入哈佛学院天文台的研究变星的专家,他们两人合作写过许多论文。20世纪50年代,配恩还写了三部有关星体演化的重要书籍:《成长中的恒星》(1952年)、《天文学导论》(1953年)和《银河系新星》(1957年)。1956年,她成为哈佛大学教授,是哈佛大学历史上第一位女教授,她还是所在系的第一位主任,当了12年。她的压轴之作是1979年出版的《恒星与星团》。
和大多数专注于自己工作的人一样,科学家有时也会因为忌妒同事取得突破性进展而烦恼。为了避免这种忌妒之情,配恩常常喜欢说,她建议科学家应该扪心自问,他关心的是知识的进步还是自己事业的进步。显然,配恩更倾向于关心知识的进步。
新方法,新发现
1931年,来自俄克拉荷马州的无线电工程师央斯基(Karl Jansky,1905—1950)运用改进过的天线,以确定无线电话联络的干涉源,由此创建了天文学中一门崭新的分支,叫做射电天文学。他在1932年发表了第一篇论文,1933年确定他发现的天体射电辐射来自银河系。
然而,这个领域并没有立时流行。射电天文学最早是从1946年由澳大利亚的欧文(E.G.Bowen)领导的太阳研究开始的。1947年,射电天文学家追踪第一个射电天体,发现它与肉眼观察到的蟹状星云位置吻合。今天天空的射电定位可以用来制作图像,帮助我们“看见”遥远星系和恒星的温度等级和热量分布。
射电望远镜往往用盘状天线收集射电波。然而也有可能,建造射电波天线时不建造盘状天线,这正是央斯基贯彻的思想。英国有一组成功的天文学家,在休伊什(AnthonyHewish,1924—)领导下,就是这样做的。平常射电天文学所用天线是用金属或导线网做成凹面反射区。最有趣的一个是世界上最大的固定盘式射电天线,安装在波多黎各的阿雷西博。这台望远镜建于1963年,天线盘直径1000英尺,占地25英亩。天线盘由40000个单个的反射面板组成,附在钢缆网络上。大量面板把来自太空的入射射电波聚焦于悬挂在天线盘上方的检测平台。近年来,射电天文学家提高了设备的分辨率,办法是建造一排天线,例如新墨西哥州索科洛的巨型阵列(VLA),它是世界上最大的射电望远镜阵列,由27个望远镜天线盘组成,在平地上排列成大Y字形。
射电天文学在第二次世界大战之前并没有真正流行,但是当它流行以后,天文学家开始对这种探索天空的新方法激动万分,射电波可以穿透尘埃云,而尘埃云会吸收太空中的太阳光,从而使光学天文学不易展开。射电波对银河系中心的研究特别有帮助,因为用普通的办法完全看不到它们。
桑达奇和马尔顿·施密特(Maarten Sehmidt,1929—)发现类星体与休伊什和约瑟琳·贝尔(Joeelyn Bell,1943—)发现脉冲星用的手段都是射电天文学。
类星体
20世纪50年代发现了一些致密射电源,但是当时的射电望远镜还不能精确给天体定位,所以很难把这些天体与用光学望远镜得到的可视图像相比较。其中有一个叫做3C273的致密源在1962年正好被月亮遮住,这才得以确定它的位置。桑达奇用帕洛马山顶的200英寸海尔望远镜拍摄到的照片在那个位置显示出一个暗沉的星状天体。
但是这颗星具有不寻常的光谱,它含有不能辨认的吸收谱线。这颗以及后来出现的其他类似的星体就叫做类星射电源,或简称类星体。
1963年,施密特发现,3C2273光谱中的吸收谱线仍然是普通的谱线,只不过向光谱的红端有大规模位移。在以后的年代里,天文学家发现了大量类星体,它们具有特别大的红移量。
恒星的光谱不仅能够揭示它的化学成分,而且从多普勒位移或红移,人们可以推算出它相对于地球的退行速度。许多银河系外的星系在它们的电磁波谱中都有趋向红端的位移,天文学家认为这些是多普勒位移,说明这些系统正以一定的速度远离我们而去,这是对宇宙膨胀的一种肯定。宇宙膨胀引起的红移被称为宇宙红移。如果类星体的红移也是宇宙的,那么它们一定处于非常遥远的地方——可能远在十亿光年之外——这就使它们成为望远镜能够观察到的最远的天体。再有,既然距离如此之远还能观察到,表明它们的能量一定非常巨大。正如哈勃指出的那样,天体离开我们的速度正比于距离。这一结果导致了如下的思想:宇宙产生于一次巨大的爆炸,而星系是向各个方向飞散的残片。这也意味着,观测到的类星体离我们非常非常远。
类星体的发现给天文学家带来了巨大的困惑。这一发现的后果或者是怀疑红移这一天文学准绳的可靠性,或者是同意在什么地方还有我们无法解释的过程。有些已经认出的类星体可能处于十亿光年以外的地方,也许它们是中心极其活跃的星系,但是离我们太远,所以它们看起来似乎是非常暗淡的单个恒星。
然而,并不是所有天文学家都相信,类星体显示了宇宙红移。例如有一位美国天文学家阿普(Halton Arp,1927—),他发现了一系列由一个类星体和一个星系组成的系统,它们似乎在物理上是相互联系的,但在它们的光谱中显示出非常不同的红移。于是他论证说,除了宇宙的膨胀以外,一定还有某种未知的机制在影响这些红移。大多数天文学家相信,类星体具有宇宙红移,而阿普发现的系统只具有表面上的相关性,它们实际上离开地球的距离远不是这样。
数据中的暗号
1967年7月,休伊什和他的学生在英国卡文迪什实验室附近的场地上排列了一长列的天线,做成更强大的射电望远镜,用来观测射电星光的闪烁。研究生约瑟琳·贝尔的工作是检查每天的星表,寻找有趣的数据。8月份,她注意到在天空中有一个小点在奇怪地闪光,在这一位置从来也没有出现过类似现象。休伊什认为可能是接收器的噪声。他们笑着把这一信号称为来自另一个世界的“小绿人”发出的信号,然后继续收集数据。后来不仅这一信号继续出现,而且贝尔小姐又发现了三个类似的脉冲射电源。他们开始意识到,这些数据反映了一个真实的现象:有一类天体,是以前从来没有检测到的。他们开始运用已知的物理定律寻求解释。
休伊什、贝尔和他们的同事就这样发现了所谓的脉冲星(因为它们在发出脉冲),科学家们认识到,他们检测到了中子星。所谓中子星,指的是这样一类星,其密度达到难以置信的程度,如同像太阳那样大的质量硬挤在一座山里面一样。尽管有人曾经认为中子星可能存在,以前却从来没有人检测到。
倾听生命之音
射电天文学也是一小群专注的科学家所用的关键性工具,他们探讨的问题是:我们孤独吗?有一些人——被称为外空生物学家——正在寻找各种暗示,看看我们人类是不是宇宙中唯一的智慧生命形式。他们中间包括著名的美国天文学家萨根(Carl Sagan,1934—1996),他和德鲁阳(Ann Druyan,1949—)合写过一本小说,书名叫《接触))(Contact)。这本书的主角是一位妇女,她把整个一生都投入到系统和科学地探究来自地外文明的可验证的符号或信息上——不是指飞碟(UFO)。小说具有想象成分——毕竟它是小说——但是萨根知道科学家是怎样对待这个问题的,当问题涉及地外智慧的搜寻(SETI)时,他把科学放在正确的位置上。考虑到“地外人”来到的可能性微乎其微(即使从太阳系之外最近的恒星到我们地球旅行,也需要经过许多代),许多科学家以为,我们也许有一天能够接收到从宇宙中某处另一个太阳系的类地行星发出的信号。但是当它到达时只有我们正在倾听,才能认出它来。
然而,搜寻太阳系之外的文明所发出的信号,其难度堪与试图在宇宙的干草堆里寻找一根针,或者在尼亚加拉大瀑布的吼声中尽力听出蟋蟀的声音相提并论——我们始终想知道,我们要找的针或者想要听到的声音究竟有没有,也许我们到头来什么也没有发现,顶多只是发现不平静的自然界在随意、持续地扰动而已。但是有些问题似乎是永恒的,深深地扎根在人们的意识里。“我们是不是孤独的?”就是这样一类的问题。20世纪80年代和90年代技术的发展已经成熟到可以进行此类实验。在世界范围内,科学家开始审视通过组织严密的搜寻所获得的来自太空的各种信号。天体物理学家和SETI科学家奥利弗(BernardM.Oliver,1919—1995)1986年在一次采访中说过:“如果我们是正确的,那么,经过好几十亿年,应该有大量的智慧文明像群岛一样在这个星系里成长,如果他们在其整个历史中都处于孤立状态,这对我来说是不可想象的。”
SETI方法第一次重大突破发生于1959年。这时有两位科学家莫里孙(Philip Morrison,1915—2005)和柯孔尼(Giuseppe Cocconi,1914—)提出,射电天文学可以用于与其他世界通信。为什么是射电天文学呢?奥利弗解释说:“从经济和效率来看,信息载体应该符合以下标准:(1)其他条件相同的情况下,能量……应该最低;(2)速度应该尽可能大;(3)粒子应该容易产生、发射和捕获;(4)粒子应该不会被星际介质显著吸收或偏转。”这些标准射电波都容易满足,因为它快速、有效而且相对便宜。所以,仅仅从逻辑上判断,智慧文明(如果存在的话)应该选择射电谱穿过浩瀚的星际太空来传送长途信号。
第一项针对地外智力进行的射电望远镜探索是名叫欧兹马的计划,是1960年由SETI先驱德雷克(Frank Drake,1930—)在美国西弗吉尼亚州绿洲的国家射电望远镜天文台(NRAO)进行的。德雷克选择了两颗邻近的类似太阳的恒星,鲸鱼座τ星和波江座ε星,用了整整150小时“倾听”。结果什么也没有发现,但是他开了一个头。
欧兹马计划之后,在美国、苏联、澳大利亚和欧洲发射了30个以上的SETI实验装置,都没有取得结果。尽管组织了许多小时的综合倾听时间,但它们覆盖的仅仅是全部可能性的一小部分。光谱的各种方向和分段以及信号调制的各种类型还有几乎无穷无尽的组合有待探索。
到了20世纪八九十年代,新技术和现代计算机的巨大数据处理能力使这些研究发生了革命性的变化。多通道分析器现在可以同时精确地显示数以百万计的射电频道。有一个计划,是1985年9月由名叫行星学会的非盈利组织建立的,创造了一台新的840万频道分析器。NASA的SETI计划于1993年失去了国会的拨款,只是在私人的资助下才得以维持,它利用超大规模集成(VLSI)电路,收集多达1000万个单独的频道。来自望远镜的实时数据由这台仪器进行分析,寻找有意义的数据,然后传送到信号分析器,再转到强大的计算机里。
如果没有这一自动筛选过程,来自射电望远镜的信息量将庞大得无法处理。在运用更先进的技术之前,一次5天观测期可以产生300盘以上的数据磁带。用一台计算机分析这些磁带上的数据,需要花两年半的时间。天文学家塔尔特(Jill Tarter,1944—)在有了这一经历后,画了一幅漫画,在由计算机打印输出叠成的磁带山下伸出一双脚,旁边写道:“活人被埋了!”她后来解释道:“如果是不实时的,你没法做这件事情。”也就是说,如果获得数据时,你不能实时处理,你将会发现:“你不能储存它,又不能靠人的智力处理它。你现在有了一种比以前精细得多的仪器,只要告诉它规则,它就会按照你的规则忠心耿耿地执行。”这项工作要求设备能够清除巨量不相关的杂音,仅仅保留可能有兴趣的信号。新技术做的正是这样的事情。
但是有了分析数据的设备还只是挑战的一部分。你面对的是浩瀚的宇宙,你向哪里观测呢?你要搜寻的对象是什么?SETI的研究者平常用的是两种方法之一:用灵敏的仪器追踪几个有希望的恒星,或者用不太灵敏的仪器以更宽的频带对整个天空进行宽带扫描。这是一个看不到头的任务,一个人可能一辈子都得不到肯定的结果。这也可能是一项带着一长串“如果”的作业。首先,假如地外文明真的存在,它有没有可能按照同样的推理,选择同样的频率,向我们这一方向播送信号?也许更重要的是,他们有没有这样代价昂贵的接近我们的企图?或者地外科学家在说服某个星系国会提供经费给这类大胆但很可能是无用的冒险事业时,会不会遇到麻烦?再有,考虑到宇宙已经存在了亿万年,当我们达到具有搜寻其他文明信号的能力时,这个时刻也许与信号到达的时刻并不吻合。从相距4光年的地方发来的信号只要4年就可以到达,然而今天从100光年以外的文明发来的信号还要再过100年才能到达。
但是,不管回答是10年、20年、50年或者甚至100年,大多数研究者都同意,我们不只是通过不确定的答案来知道情况,而是从我们搜寻的方法来知道情况。
搜寻就这样继续着。智慧是不是孤立的现象,而地球是不是它唯一的代盲人?我们是自然界短命的怪物,还是更大的宇宙社会的一部分?像我们这样的文明,是否能够长期存在,以至有能力到达其他世界,还是人类注定要灭亡,孤独地和不被注意地,在大自然的操纵下走向末日?有没有其他类似我们自己的代言人,宇宙黑暗中的其他搜寻者,正在寻找光和友谊?正在寻找希望?只有时间,以及全世界的SETI计划才会作出回答。
太阳系外的行星
1995年以前,科学家正确地假设,一定还有其他的太阳系,但是没有一个人看到过任何证据,能证明其他恒星有像地球一样的,与太阳系其他行星一起围绕着太阳旋转的行星。后来,运用多普勒光谱学,发现在一颗叫做飞马座51的恒星周围有一颗地外行星在旋转。这是一项令人激动的突破。从那时起,直到2003年9月,太阳系外的行星数目上升到了110个,它们的位置全是用同样的方法确定的。到目前为止,它们都是一些非常大的行星,比气体巨星木星还要大得多——不过这些也是最容易发现的。还有许多行星也许存在却至今未能检测到。
在我们太阳系之外快速地发现了如此之多的行星,是一个令人激动的迹象,暗示在宇宙中某些地方确有可能存在导致生命起源的环境。这是一个尚未揭开的大奥秘。
早期阶段
千百年来,人们始终在问:宇宙是怎样开始的,它会不会结束,怎样结束?然而当20世纪50年代有可能科学地解释这个问题时,大多数天文学家却试图回避。伽莫夫是一个例外。1948年伽莫夫研究出了一个方案,认为勒迈特利(Georges Lemaitre,1894—1966)提出的某种原始“宇宙蛋”或者“超级原子”的爆炸可能导致宇宙内各种元素的形成。伽莫夫是通俗科学读物作家,很快就由于这一关于宇宙起源的思想而声名鹊起,尽管这一思想并没有被普遍接受。
其实,许多科学家感到“早期阶段”问题要么不属于科学的范围,要么就是对科学的一种冒犯。英国物理学家霍伊尔(Fred Hoyle,1915—2001),也是一位科普作家,与奥地利人彭第(Hermann Bondi,1919—2005)和古尔德(Thomas Gold,1920—2004)联合提出了一个与之对抗的理论。由于极其不满意时间具有开端这一思想,他们提出的一幅图景称为“稳态宇宙”,其中物质不断创生,结果推动了宇宙的膨胀。宇宙的膨胀是哈勃在观测到所有星系都离我们而去时作出的结论。霍伊尔取笑伽莫夫的理论,戏称其为“大爆炸”理论。可以想象当这个名称后来流行时他会感到多么惊愕。
微波背景
与此同时,1964年新泽西州的贝尔实验室有两位研究者彭齐亚斯(Arno Allan Penzias,1933—)和威尔逊(Robert Woodrow Wilson,1936—),他们正在利用实验室的大型射电天线搜寻来自天空的弱信号,但是在对付背景噪声以便提取更清楚的信号时却遇到了麻烦。于是,他们把设备拆开,检验底盘,检验所有的接头。他们甚至在底盘中发现了鸽子窝,于是小心地轰走了这些鸟,把鸟窝移到几英里之外的地方。但是鸽子又回来了。他们再次轰走它们。但依然无法摆脱这种穿透宇宙的微波背景辐射。这一辐射就像巨大的回声,似乎意味着很久以前的某个时间发生过某种重大事件,从而使整个宇宙的温度升高,现在它已经几乎完全消散了。这是第一次真正支持年轻的伽莫夫于1948年提出的思想,他不仅预言了这一辐射,而且还正确地计算出它的精确温度是绝对零度之上的3K。
然后在1992年,另一份证据问世。处理宇宙背景探测器(Cosmic Background Explorer,COBE)太空船发回地面数据的科学工作小组宣布,与以前的证据不一样,宇宙背景辐射具有“波纹”。以前,威尔逊和彭泽亚斯以及后来所有研究者收集到的数据,都表明背景辐射的温度都是相同的,不管你观察的是天空的哪一部分。从这一恒定的温度,科学家推论得出,早期宇宙一定是光滑和均匀的,完全没有现在宇宙学家所谓的“肿块”。当我们遥望天空,看到一团一团的物质——星系、星云——点缀在空旷的太空里时,这些斑点就是宇宙学家所谓的“肿块”。
新的数据引人注目,因为它非常精确。COBE是NASA在1989年发射的,在第一年里沿着轨道进行了几亿次温度测量。在这样大量的数据中,COBE小组发现温度有微小的变化,冷热相差只有一度的百万分之三十,这些变化发生在早期宇宙气体密度有微小涨落的区域内,差不多是大爆炸之后的300 000年。(当我们说到时间开始之后仅仅300 000年时,就好像一个活了90岁的人一生中的第一天一样。)
当宇宙膨胀时,这些早期温度涨落区域也在成长,所以现在COBE检测的区域相当于几十亿光年的跨度。实际上,这些区域是如此之大,它们不可能是我们观测到的哪怕是最大星系团的先驱。但是它们的发现使得科学家确信,有可能找到更小范围内更大的密度涨落,而它们似乎是支持宇宙诞生的“暴胀”模型的。
当然,究竟宇宙是不是从大爆炸开始,还是以别的方式,创世的思想总会提出这样的问题:物质最先是从哪里来的?但是,正如宇宙学家霍金(Stephen Hawking,1942—)曾经说过的那样:这就像问北极之北5英里在什么地方一样。或者,换句话说,任何关于“大爆炸之前”的问题都是非物理的。时间存在于宇宙中——宇宙却不存在于时间里。
黑洞
与此同时,20世纪50年代在剑桥大学发生了一场个人奋战。年轻的物理学研究生霍金刚刚得知,他患了一种名叫肌萎缩侧索硬化症,难怪在过去的几年里,他走路和说话变得越来越不协调,逐步发展的瘫痪在几年内将把他困在轮椅上。在未来的岁月里,他只能眼看着体力衰退,直至死亡。这位卓越的年轻学生立刻陷于深深的失望之中。怎样把已经开始的充满希望的事业进行下去?难道一切都要放弃吗?几个月过去了,他的工作没有进展。
尽管霍金的健康无法恢复,但是他的事业可以恢复,这对科学来说,是一件幸运的事情。他的导师想出了一个计划:向他提出一个如此富有魅力的问题,以至他无法舍弃。就这样,霍金开始深入地探究黑洞,成了世界上在这个课题上最知名的专家,这个课题是现代天文学最有挑战性的问题之一。
霍金美国物理学家惠勒(John Archibald Wheeler,1911—)在20世纪60年代创造了“黑洞”这个词,表示恒星坍缩时最终形成的一种结构,那只不过是一个奇点。根据爱因斯坦的相对论,当这种情况发生时,任何东西都无法逃离高度集中的质量——甚至包括光。所以黑洞是看不见的,除非注意它的效应。
1974年,霍金提出“黑洞并不黑”的概念,也就是说,他认为黑洞能够缓慢地释放辐射。他说,黑洞也许有可能像在太阳底下蒸发的雪球。这似乎是矛盾的,因为根据定义,黑洞是如此之重,以至于没有东西可以逃逸它的引力,包括光。这就是为什么把它叫做黑洞的缘故。黑洞的周边叫做视界,不允许任何东西逸出。
但是,霍金率先把量子力学运用到黑洞理论中,由此提出物质可以在视界里的“虚”空间产生的思想。也就是说,根据量子理论,虚粒子不断产生和湮灭,其速度快到永远不会干扰能量和质量守恒定律所要求的平衡。霍金认为,这只能发生在黑洞的视界上,当大多数虚粒子立刻湮灭在黑洞中时,偶尔也可能有少许沿另一方向泄漏出去,于是黑洞就会缓慢释放出辐射。
这一思想与20世纪80年代麻省理工学院的古斯(Alan Guth,1947—)提出的宇宙起源理论相当吻合。古斯的理论叫做暴胀模型,说的是在宇宙起源的最初几分之一秒里,整个宇宙突然间在极短的时间(万亿分之一秒)里爆炸,使宇宙从一个原子的大小膨胀到几十亿光年的跨度。
失踪的质量
天文学中观测到的古怪现象之一是瑞士天文学家茨维基(Fritz Zwicky,1898—1974)在1933年发现的。这个现象可与黑洞匹敌,有时称之为“失踪的质量”,因为许多线索都告诉我们,有某些东西是用任何类型的望远镜也观测不到的,茨维基称之为暗物质。茨维基是一个性情暴躁、爱好抬杠的人,正如一位同事说的那样,他“喜欢证明别人错了”,这就不奇怪为什么正是他最早注意到宇宙账簿的不平衡现象。他提出“失踪的质量”这一思想,就是为了说明看不见的暗物质一定存在——有可能在星系和星系之间存在某种比我们能够检测到的物质多10至100倍的东西。
起初,没有人信他的,时至今日,某些天文学家依然认为,我们看到的物质不足以造成我们看到的恒星和星系之间的连接。在宇宙中似乎有更大的引力,其大小比我们根据明亮物质的观测所能够解释的大得多。
事实上,目前的怀疑是,我们已经发现,我们迄今为止没有办法检测宇宙中99%的物质。它既不发光也无法用X射线或射电天文学的方法检测,但是我们却能看到它的引力效应。
例如,20世纪70年代华盛顿特区卡内基研究所的鲁宾(Vera Cooper Rubin,1928—)和福特(W.Kent Ford)收集了广泛的数据,它们表明在星系团中,远离中心的星系以比我们看得见的质量——恒星和发光气体——赖以约束在星系团中的引力效应大得多的速度运动。他们对旋臂星系旋转的研究表明在星系边缘有暗晕轮的存在。鲁宾和福特估计,在这一晕轮中暗藏有10倍于我们实际上在星系中看到的物质量的某种东西。在比星系更大的尺度上对星系运动所作的统计分析支持这些思想,并且估计暗物质比我们能够探测到的物质量大30倍(星系内部除外,在这里普通物质占了优势)。自从1978年以来,在卡内基有一个小组,其中包括鲁宾、福特、伯尔孙(David Bursein)和怀特默(Braley Whitmore),他们分析了200个以上的星系,得到的结果都是肯定的。
什么是暗物质?还没有人能够明确说明。但是可以肯定的是,它绝不是普通物质。也就是说,它不可能是我们无法检测到的由恒星和暗星组成的黑洞或者小块的固体物质。到了1984年,候选者是中微子(如果其质量大于零)或者假设的粒子:光微子(photino)、引力微子(gravitino)和轴子(axion)。有些科学家认为,暗物质也许是大爆炸留下的运动缓慢的基本粒子。
正如英国恒星天体物理学家里斯(Martin Rees,1942—)所说:“要解决隐藏质量的特性,最简洁的方法自然是检测到构成它的天体。”
有些天体物理学家认为,白矮星与失踪质量有关,因为自矮星是一种衰退的恒星,由气体的收缩而形成,但因其质量非常小,核反应不能在其核心进行。由于其中没有核反应发生,白矮星都非常暗,难以检测到,以至没有人发现过白矮星,因此它们只被看成是假设中的存在。然而,1995年第一颗白矮星终于被发现了。直到2003年9月,又发现了好几十颗白矮星,这要归功于极其灵敏的红外探测器。许多天文学家认为,白矮星在宇宙中很可能和常规的恒星一样普遍存在。在恒星附近发现的某些大型气体行星(不存在于太阳系中)也可能是白矮星。所以,白矮星可以对某些失踪质量作出很好的解释。
许多奥秘已经开始转向天体物理学家所谓的“暗能量”。天文学家对这一可能性发生兴趣已经有好几年了,2003年10月完成的三维宇宙图似乎肯定了暗能量的存在。在把宇宙的大尺度结构细化之后,这幅图景反映了宇宙140亿年演变中各种力的相互作用以及星系与暗物质的聚集。它还提供了一种估计,普通物质占到宇宙的5%,传统的暗物质占到大约25%,而渗透在这个宇宙中的暗能量则构成了宇宙其余的70%。斯隆数字太空勘测(Sloan Digital Sky Survey,SDSS)国际工作组可以作为许多21世纪科学计划管理的复杂性的一个范例,它组织了来自13个研究所的200位科学家为这幅图景工作。
在20世纪90年代中期以前,天体物理学家和宇宙学家把引力看成是修饰和形成宇宙的主要力量。后来在遥远的太空中观测到恒星爆炸,表明还有一种力——“暗能量”——使宇宙向外扩张。2003年2月,一张研究不同星系的早期图像肯定了暗能量的存在。一位科学家评论说:“证据之网极为强大,所有观测都指向暗能量。”现在的问题是,暗能量究竟是什么?
一揽子全包……
萦绕于宇宙学家和亚原子物理学家心头挥之不去的最为令人着迷的问题就是:这一切是怎样开始的?
现在几乎所有理论家都同意,一定有过一个起源时刻,也一定有过一场大爆炸,它源于比任何原子核还要小的粒子的一次急剧性爆炸。尽管暴胀理论出现某些漏洞,但这一宇宙暴胀模式的新理论,在天文学家和宇宙学家中取得了广泛认同。暴胀理论回答了“大爆炸”理论涵盖的许多问题,但不是全部问题。
例如,为什么不是所有一切都正好在那爆炸的瞬间,如此激烈地炸飞,以至于所有物质都均匀散布开来,既没有相互连接,也没有局部集中,没有恒星、行星、星系和彗星?或者,如果不是有足够的动力使得所有事物四散飘离,那么,为什么这一紧凑的原始宇宙不可以是挤作一团?理论家实际上计算过宇宙要避免这两种命运的临界值,并且这种计算是有效的。
然而,许多理论家都曾经试图描述在最初的一刻究竟发生了什么,试图追溯到原子结构更为简单的那一刻,试图在我们今天看到的复杂性后面寻求简单的对称。他们追溯到新生宇宙最初瞬间,温度在亿亿亿度之上,在这一刻,弱力、电磁力和强力全都是一种力。这些努力就是所谓的大统一理论,直到现在,这些理论没有一个有效。格拉肖曾经这样说:“大统一理论是既不大,也不统一,更不是理论”。所以正如粒子物理学家莱德曼(Leon Lederman,1922—)所说:与其用理论一词,不如说它们都是一些猜测性的结果。
为了携带这个力,不得不假设存在一种古老的信使粒子,叫做希格斯(Higgs)玻色子,这是一种超重量的粒子,扮演大统一力的信使,就像光子现在充当电磁力的信使一样。在时间开始时,粒子和反粒子可以相互快速转变。例如,一个夸克可以变成一个反电子(正电子)或一个反夸克,而一个反夸克又可以变成一个中微子或一个夸克,等等。这个过程是以希格斯玻色子作为媒介的——但是这种粒子还有待发现。欧洲核子研究中心有一个研究小组正在捕捉希格斯粒子存在的证据,他们是这样认为的,这种粒子有时也叫做“上帝的粒子”,因为它负责传递所有质量给原子性粒子。但是也许要等待欧洲核子研究中心新的加速器完成后才有结果。如果检测到了希格斯粒子,由原子性粒子,包括轻子和夸克等组成的以及量子色动力学所描述的复杂组合——所谓“标准模型”的原子图景——将会得到验证。然而,现在这一验证也许还要等待。
要把所有四种力综合在一起的努力更为大胆,也更富有猜测性,这四种力是把引力也包括进来,量子色动力学——夸克的行为及其颜色特性——加上引力。这些概念,有时被称为万物理论(TOES),非常复杂。有一种所谓的超弦理论曾经一度相当普及,这种理论解释说,在大爆炸最初的一刹那,并没有点状粒子,只有一小段弦。它需要十维才能运作——九个是空间,一个是时间。要解释为什么我们只知道三维的空间,理论家推测那是因为另外六维自行卷曲了。
然而,许多科学家对于这种过度的理论化感到不安,这些复杂的理论一环扣一环,几乎难以诉诸实验进行验证。再有,研究越来越小的基本粒子结构,要求越来越大的加速器和探测器。最终目的——通过统一对称原理理解物质的基本结构——值得赞美,但是需要的数学复杂性却没有止境。结果,许多批评者担心宇宙科学有变成某种新神话的危险,因为它已与可检验的科学失去联系。
然而,纵观1946年以来的几十年,天文学家和宇宙学家得到了极其丰富的新数据、新展望和新思想。研究人员发展了更为复杂的研究宇宙以及宇宙结构和起源的方法,它们的精确度和准确度都达到了前所未有的程度。再有,与粒子物理学的高度交叉对两个领域都产生了重要的新启示。
结果是,宇宙变得比以前更庞大、更复杂,也更有趣。
探索太阳系
正当宇宙学家想象宇宙最初时刻的惊心动魄、探索黑洞蒸发引起的后果、思考暗能量和它的本性时,20世纪后半叶还引进了大量更接近事实的新知识。在火箭驱动器的帮助下,人类可以通过太空船的形式送出使者,这些太空船的动力一部分是借助于太阳“翼”,实际上可以到达太阳系任何行星、卫星或小行星。以前纯粹是科学幻想的对象,现在至少部分地成了现实。人类从地球这个安全摇篮来到月球旅行,漫步于月球上,带回上面的岩石。太空船访问了几乎每一个行星揭示了成千上万的奥秘,有大的也有小的,并发现了许多卫星。有些太空航行持续到21世纪,还有更多的正在计划之中。从20世纪50年代末以来,大量图像从太阳系各个角落被发回地球。这些情景令人惊讶,各种发现激动人心,实际上我们邻近的行星及其卫星没有一个符合原先的估计。
这一切肇始于苏联人造地球卫星1号,它于1957年发射升空,绕着地球轨道独自旋转。人类第一次成了太阳系里的旅行者,绕着地球旋转的人造卫星和进入大气层的火箭探测器开始从外部向我们提供有关地球及其大气的新图景。在这之后,紧接着的是去月球的太空航行(载人和不载人)以及去太阳系几乎所有行星的不载人航行,仅仅冥王星除外。以前即使通过最大的望远镜镜头看到的也不过是微小斑点的遥远地方,现在成了坑坑洼洼布满岩石的表面,由炽热气体组成的旋转气团,处于活动期的火山熔浆以及冰冻的沙漠。这是空旷而神奇的地方,之前人类的眼睛从未如此近距离地看到过它们。在万籁俱寂的太空中,神秘的机器人呼呼地走近它们,给我们发回令人惊奇的特写照片和数据资料。一切都与过去的想象不尽相同。
土星光环和木星卫星木卫一的奇异而色彩斑斓的特写照片今天已经家喻户晓,以致我们忘记这些庞大的、正在旋转的岩石和气体离我们有多远。就在几年前,要得到这些图像还是不可能的事情。在17世纪伽利略从他的望远镜窥视到证据之前,谁也没有猜想到土星光环的存在。(当时他还不能断定这些挂在行星两侧的奇怪的“耳朵”究竟是什么——并且随着季节变化,这些耳朵会消失。)现在我们有了详尽的数据,可以了解它们的结构、大小、运动及其与行星和卫星的关系,这主要应归功于名为先驱者11号的太空船,它是1979年发射升空的,后来又在20世纪80年代发射了旅行者1号和2号。
从伽利略的时代以来,行星科学一直是依靠仪器——越来越大、越来越复杂,也越来越昂贵——现在甚至标出更高的价格,但收益也越来越大。我们实际上可以看到这些遥远世界的表面、测量它们的大气、研究它们的历史,并与地球比较,从而知道与我们自己的地球家园有关的许多知识。我们所知道的有关宇宙的机理——从大气和气象的动力学到太空中围绕地球的太阳风和辐射带的存在——不仅为我们增加了知识的基本储量,而且提供了适合地球的宝贵教训。
月球:最近的邻居
地球和月球,这一对行星和卫星,紧拴在一起舞动,围绕共同的引力中心旋转,两者中那个大的,呈现出绿、蓝、白,色彩斑斓,上面有水、有生命;小的那个,只有地球的四分之一大,无色、伤痕累累、坑坑洼洼、标记着时间的流逝。它的背面,黑暗而多坑,永远背对地球,向着群星。在遥远的过去究竟发生了什么灾难,使月球变得如此寒冷和荒凉?
月球是我们最熟悉也是最神秘的太空邻居,它总是激起人类的好奇心,也是无数古代神话、传说和歌曲的主题。古人的历法就是依据它在天空中的规律性运动而定,它的相位变化标志了季节的转换。
对于科学家来说,问题有很多:月球表面究竟是什么样子。它怎么起源,又是怎样变成今天这个样子?它的地质条件如何?我们从来没有看见过的另一面是什么样子?当美国和苏联一旦拥有摆脱地球引力的能力时,月球就成了首选的理想探索之地。和望远镜与照相机一样,火箭给予人类新的工具,用它可以帮助揭开月球的许多秘密。
在1958年至1976年之间,美国和苏联向月球进行了80次太空行动,尽管只有49次按计划完成了任务,有些则永无结果。但是在这些飞行任务中——其中包括轨道飞行器、软着陆、照片会议探测器(photo session probes)、两次载人飞行以及六次宇航员着陆——带回或送回了有关这个太空最近邻居的大量信息。不久以前,对月球的新兴趣又激发了好几项新的太空行动。1994年夏天发射的克莱芒蒂娜号就是美军和宇航局的一项联合计划,送回了150万张照片,测绘了99.9%的月球表面。激光技术还使克莱芒蒂娜号制作了一幅详细的月球地形图,并且在这个过程中,小小的太空船在月球两极遭遇了一次反射,表明有可能存在冰水。这一可能性令人震惊,既然月球上有水,这就为移民提供了有力支持,而不少政府曾经考虑过移民计划。4年后,1998年1月,美国宇航局发射了另一艘太空船月球勘探者号,任务是围绕月球运行和测绘月球,直到1999年7月,这时科学家希望在月球极地附近进行着陆,以便送回可供检测的冰水样本。令人遗憾的是,并没有检测到冰。最近,欧洲宇航局(ESA)发射了智能1号,它是一个小飞船,需经16个月的飞行才能到达月球,它的主要目的是检验太阳电驱动技术。智能1号于2003年发射,预定2004年抵达月球。日本也在2004年发射月球探测器,中国也有登月计划。在经过大约30年的沉寂之后,月球现在又一次成了太阳系的探索目标。
经过许多次的访问,我们已经知道了月球很多事情。它的年龄和地球几乎相同:大约为45亿年。氧同位素的相对丰度和比例暗示,两个星体在形成时曾互相靠得很近,不过关于形成过程的细节,各种理论说法不尽相同。月球会不会像一滴染料一样,是从地球“甩出来”的呢?要真是这样,地球必须旋转得非常之快,这个想法不乏支持者。它会不会也和地球一样,是由同样的星子(组成行星的物质)在差不多同样的时间里结合或凝聚在一起的?如果是这样,为什么不是两个“行星”而是一个?或者,会不会是当月球路过时,地球把月球“捕获”进了它的引力场?或者,也许是,在地球形成的早期,当它还处于熔融状态,内部正有许多小星子在缓慢转变时,一颗大的“残余”星子冲击了它,使得地球和星子的一部分蒸发,熔融的碎片喷撒在围绕地球的轨道上,这些碎片最终成了月球。
月球探索留给我们最重要的遗产也许是对月球更多的理解,对地球更多的欣赏,还有破解太阳系某些奥秘的关键线索。当我们近距离审视月球时,看到的只是一片荒凉的世界,这个世界太小了,其质量不足以拉住大气。月球和地球不一样,它是一个发育不良的世界,只有过去,没有发展或变化——这个世界是如此的安静(只有等到下一次撞击),以至于宇航员在它的尘埃表面上留下的脚印可能会保留100万年。如同化石可以告诉我们太阳系和地球的历史一样,我们到月球的旅行已经告诉许多关于我们自己和我们生物圈里其他成员的知识,于是我们对自己存在的稀有性留下深刻的印象。
当然,下一步,我们将转向探索最近的邻居行星——金星。
被遮掩的金星
在早晨或者在黄昏的天空中常常可以看到一个明亮的发光体,那就是金星,它是我们最近的行星邻居。有人把金星看成是地球的孪生兄弟,它的直径、大小、密度和地球差不多。两者相距仅2600万英里,沿类似的轨道围绕太阳旋转。但奇怪的是,即使用最强大的光学望远镜也无法透过围绕在金星周围的厚厚的云雾,正是它阻挡了我们的视线。
科幻作家、天文学家和行星学家都在作种种推测,也许云层下藏着的是一个多雨炎热的行星,到处都是充满生命的海洋和丛林。我们看不见其表面,但是确信云层意味着水蒸气,而水蒸气也许意味着生命,甚至可能有智慧生命。这一想法很难打消,但是从20世纪30年代起,射电天文学和光谱学开始给出线索,如此的大气和温度不可能隐藏我们所知的生命。到了1961年,微波天文学使我们进一步认识了这颗行星的旋转方向和速率、大气温度、密度和压力以及粗略的地形学概念,但仅在第一次行星探测使命之后,我们才开始完全肯定,地球和金星有截然的不同。
在1961年至1989年之间,美国和苏联向金星发射了20多次太空飞船,大多数都是成功的。探测器探测了大气的上层、中层和底层,分析了化学特性、云层运动、压力和温度。苏联发射了几台登陆车,穿透云层,送回金星多岩平原的照片。它们传递了地面温度的读数和更多的大气分析资料,并且用轨道飞行器测绘了表面。
美国的水手10号太空船发射于1973年,1974年初在去水星的途中飞经金星,对金星作了一些有趣的观测,其中包括各种照片,其分辨率是地球拍摄的7000倍。
1978年,美国发送两艘先锋号太空船:先锋12和先锋13。先锋13携带4台大气探测器,部署在大气的不同部分,采集温度、压力以及风向等数据。但先锋12是研究金星的主角,先锋12设计成能围绕金星运行243天,并持续十年发送科学数据。到了1988年,先锋12已经送回10万多亿比特的数据,其中包括对极端温室效应的描述,这一温室效应俘获了太阳的热,使金星的表面温度高达900°F。
在1978年到1983年间,苏联成对地发送了6个金星探测器(金星11到金星16),大多数是登陆车。它们都送回了有价值的细节,其中包括金星地表的彩色照片、钻孔取出的土壤样品分析和地震实验资料。1984年苏联又发射了两艘太空船:织女1和织女2,上面搭载了来自好几个国家的实验装置,并且在金星任务完成后继续飞行,与哈雷彗星会合——这是第一次对彗星的访问,也是一次国际协作。
当美国1989年向金星送出的麦哲伦号太空船1990年到达以后,根据有关金星的所有数据,一幅新的图景开始形成。尽管有一些技术困难,麦哲伦号仍然送出了极好的金星地表雷达图像,完成了金星旋转一整圈243天的雷达测绘。麦哲伦号还显示了被地壳力撕开的和被灼热的风破坏的地表,以及地壳严重变形,被强烈的火山爆发摧残的情景。
大体说来,金星的景象与想象中绿色而充满生机的行星大不相同。透过表面一层厚厚致命的硫酸云,一缕暗淡的桃色光穿透进来。微风吹拂着这块贫瘠而又充满尘埃的高原沙漠,这里的温度竟高达891°F。在上层大气中,风以217英里每小时的速率驱赶着头顶的云层,这一速度竟比金星那反常的逆向转旋还要快60倍。远处,剧烈的闪电照亮了锥形火山上方笼罩着烟雾的天空,正如美国水手5号科学小组的技术备忘录所说:“金星似乎在提供发烫的热量、窒息的大气、沉重的压力和雾蒙蒙的天空,也许还要加上可怕的气候和恶劣的地形。”
烤焦的水星
水星像是一只小飞蛾围绕着亮光盘旋一样,是最接近太阳的一颗行星。它飞快地沿着椭圆轨道掠过极亮的太阳附近,使我们很难用望远镜观测。它的表面在几十亿年的过程中被烤焦,看来就像是备受燃烧的磨难。
但实际上,水星是一颗经受太阳烘烤,由岩石和铁组成的具有密集质量的行星。它绕太阳旋转一周,只需88个地球日,与太阳这一火炉的平均距离为5 800万英里。结果,它成了从地球上最难观测的一颗行星,只有早晨和傍晚的短时间内才有可能观测到。即使望远镜的发明也没有把水星更好地带入镜头。
1974年3月水手10号到达水星。它装备有避免太阳辐射的特殊防护,飞到距水星表面仅437英里的地方以便近距离观测。它携带了两台附有5英尺望远镜的电视摄像机,一台X频带射电传输器、红外辐射计以及紫外实验设备,向地球发回了近2 500张图片。在与水星的天空擦边而过后,太空船绕过太阳又有两次回到水星身边,在1974年9月和1975年3月发回了大量照片。
当第一批照片从水星返回时,科学家对这颗行星与月亮的酷似留下了深刻的印象。从水星被烤焦的表面坑坑洼洼,他们得出结论,水星的地质学历史在许多方面一成不变,在大约39亿年以前,曾有无数陨星对它狂轰滥炸。
实际上,月球比水星还要平整些。除了一个名叫卡洛里盆地的巨大平地以及少许其他的小块地面,整个水星遍布陨石坑。还有,当科学家相信月海(月球表面宽阔平整的黑色区域)由熔岩流造成时,大多数人对卡洛里盆地的形成却持完全不同的观点。有些证据表明,水星上曾有火山活动的遗迹,包括某些部分得到填充的盆地,但是,庞大的卡洛里盆地也许是水星历史上最奇异和最重要的事件形成的:也许是和一个巨大的小行星碰撞的结果。
行星科学家从这些证据猜测,有一个小行星——直径可能大于60英里——在很久以前撞上了水星,夷平了跨度大约为850英里的面积。当它以315 000英里每小时的速率冲击水星时,这一庞大的抛射体永远地改变了水星的面貌,形成了陨石坑,并把陨石坑周边的山峦加高了一英里半。有些专家甚至认为,水星杂乱无章的背面,可能也是由针对水星的巨大冲击波撞击而形成的。
许多天文学家认为,这一剧烈撞击也许是行星演变过程中最后一件重大事件。再从水手10号照片的地壳破裂及其他证据判断,他们推想水星在撞击之前曾经历过明显收缩,也许是由于铁核的冷却或行星自转的减慢。此后,水星显然停止了演化。显然水星是在39亿年前那次毁坏月球的大撞击的同一时期之末“死亡”的。
水星表面的原始状态就像是一幅快照,把我们拉回到过去的时期,得以窥见太阳系演变和起源的细节。这是行星科学中的主要进展。
红色行星——火星
在我们的太阳系所有行星中,长期以来火星一直是科幻作家的最爱,也是天文学家的最爱。自从有望远镜起,这是唯一可以看见其表面的行星,在19世纪90年代,它激起了人们种种遐想,这一切源于天文学家洛厄尔(Percival Lowell,1855—1916)的观测——推测在火星的平原上有人工开凿的纵横交错的运河,标志着文明的存在。火星北极冰盖周期性地收缩和成长的季节性变化,激发人们幻想火星和我们地球非常相像,或许也有生机勃勃的春季和荒凉寒冷的冬季。
这一叫做旅居者的漫游遥控小车正在火星的地表上离开登陆车远去,它绕过登陆点区域里的一块块岩石,在这里采集样品、测试和拍摄。这是火星探路者号太空任务的一部分。这辆小车由地球上的探路者号小组遥控。2003年夏天发射了类似的太空飞船。当探测人员第一次成功地让机器人太空船——1964年11月美国发送的水手4号——飞经火星时,结果却令人大失所望。从距火星表面6 000英里的地方飞过,第一次看到的火星似乎是平坦的,没有特色,缺乏生命迹象。1968年又有两艘水手号太空船发送,任务是掠过火星,也没有太多收获——除了暗示有火山活动和侵蚀现象——无助于加强我们对在火星表面能有所发现的期望。
然后是1973年11月13日名为水手9号的机器人探测器独自进入火星轨道,成为第一个围绕另一颗行星运行的人造天体。尽管太空船抵达后不久就遇上了尘暴,但水手9号所登陆的火星仍然使地质学家感到兴奋异常。火星被证明完全不是古老和死气沉沉的世界,而是曾经可能有过河流和火山爆发的世界。这个行星的表面温度和大气也许曾经适于至少是某些简单生命形式的生存。各种推测纷至沓来。
有一座被科学家称为奥林匹斯的火山,高出火星表面79 000英尺以上,它是太阳系中最大的山。它的底部跨度长达350英里,大到可以把整个密苏里州覆盖!还有一座巨大的峡谷叫做水手谷,也具有同样可观的规模,长度几乎相当于火星直径的六分之一,约2 800英里,宽度370英里,几乎比大峡谷长13倍,(相当于纽约至加州的距离)。在长约600英里,看来像是干河床的地方找到了水流的证据。如同水星与月球一样的情况,小行星撞击在这个过程中也起着重要作用,陨石坑的直径大于100英里。火星的照片里唯一没有出现的就是高级文明的任何证据,洛厄尔认为他看到的运河绝没有出现。没有建筑物,也没有圆盘式卫星电视天线。没有茅草屋,也没有耕过的土地。实际上,没有任何关于文明或生命的信息。
然而,1974年当苏联的探测器火星6号送回有关氩含量大于预计百分比的消息时,就带来了关于大气的有趣信息。因为氩是惰性气体,大气科学家猜测,这些氩可能是大气留下的——也许是一种稠密的大气,这样才有大量的氩——至于大气中其他气体则已经与其他元素结合或者消失在太空中了。
也许,有了火星在过去某个时期曾经有过流水和稠密大气的证据,认为火星上有生命,至少在以前某个时期曾经有过生命的思想就并不完全是无效的概念。
我们怎样才能弄清真相呢?1975年有两个机器人太空船,名为海盗1号与海盗2号,从美国肯尼迪角发射台发射升空,它们的部分计划就是希望解决这个问题。每个太空船都有轨道飞行器和登陆车各一台,当它们在1976年抵达火星轨道时,登陆车脱落,离开正在围绕火星旋转和观测的轨道飞行器,靠降落伞抵达地表,两个登陆车分别降落在不同地点,以便对火星土壤取得详细资料。登陆车机器人从地表挖取土壤,进行了一系列试验。海盗号科学小组希望回答的最大问题,就是自从洛厄尔时代以来以及之前世人一直不能忘怀的问题:火星上有没有生命?回答令人失望:没有。至少在测试的地点没有,或者至少现在没有。
1988年苏联发射了研究火星卫星火卫一的太空船,但是两艘太空船都未能如期到达火星。美国发射的火星观测者号,也遭受同样命运,它本来计划在1993年到达。然而,自那以后的好几次太空飞行都非常成功:火星寰球勘测器在1996年发射,1997年抵达火星,直到2003年都还进展顺利,发回了数万张火星地形的精彩照片,这是20年来有关火星的第一次成功完成的太空任务。火星探路者号也是在1996年发射的,按设计它在1997年7月4日降落到火星表面。火星探路者号登陆后,太空舱打开,放下世界上最远距离的遥控车。这部机器人漫游车叫做旅居者,它并不比微波炉大,沿着火星那崎岖不平的地表一路滚动,一边勘查和取样,全世界都通过电视和互联网进行实时观看。这是一次巨大的成功。
另一艘轨道飞行器“2001火星奥德赛号”在2001年发射,它在轨道上飞行,同时继续收集数据以帮助鉴定火星土壤的成分。在经过两次失败的飞行后,美国宇航局设计了两台坚固的机器人漫游车(“精神”与“机会”)到火星漫游。两台漫游车在2004年安全到达火星,开始探测岩石和地表,它们在这里发现了曾经存在水的重要证据。欧洲航天局在2003年也发射了太空飞船“火星快车”,2004年初到达。登陆器的组成部分“小猎犬2号”被设计成专门用于搜寻火星上的生命,但遗憾的是,它在火星地表上失踪了。
关于火星还有许多问题无法回答。如果火星真的曾经有过稠密的大气,允许水以液体状态存在于它的表面,那么,这些水都到哪里去了?为什么都不见了?会不会有一些水被锁定在火星地表下的冰冻层?有多少水永久地冻结在火星北极而被保存下来了?我们确切地知道,在那里还有一些水存在。行星学家根据最新的报告判断,在火星上至少有三个区域有冰水存在:南半球火星土壤下、北冠的表面和南冠边缘附近的表面。这一冰冠的其余部分大多是“干冰”,即冷冻的二氧化碳。科学家继续猜测,这三个地区“正好是露出地面的火星冰山顶”,这是美国地质调查局的提图斯(Timothy Titus)说的。
也许火星上曾经有过快速流动的水,水流冲开了巨大的火星运河。有些科学家,包括行星地质学家卡尔(Michael Carr)和美国宇航局阿梅斯研究中心的外空生物学家麦克凯(Chris McKay)认为,火星“也许有过”更宜人的过去,那时曾经存在过非常奇异的简单生命形式,也许有朝一日我们会发现那个时期的某些蛛丝马迹或化石证据。正如优秀科学家所做的那样,机器人探测器——海盗号、它们的先行者和它们的后继者——已经回答了许多问题,但是也提出了更多的问题。
小行星
在太阳系里的各种轨道中,有一群奇形怪状的巨大岩石穿过空间,它们中的大多数都在所谓小行星带的区域内围绕着太阳旋转,这个小行星带处于火星与木星的轨道间。你可以把它们看成是太阳系形成时留下的“剩余物”;小行星是组成行星的原料,是太阳系的结构单元。行星学家认为,几十亿年前,正是这样一些小行星结合形成了行星。在小行星的成分中,无疑会保留大量45亿年前的秘密,如果我们能够接近它们,就有可能发现大量原始信息。
不过,有一些小行星结集在小行星带之外,还有大约1%的已知小行星,它们的轨道竟跨越一个或更多的行星轨道。例如,其中有两个叫做阿波罗和阿托恩的小行星群轨道与地球交叉。近年建立了相当可靠的证据,支持了一种设想,认为平均在每5000万年到1亿年中,会有一次地球与交叉小行星(其跨度约为6到10英里)的大碰撞事件。最近的一次小行星撞击事件,也许是恐龙遭到突然灭绝的原因,恐龙统治了地球长达1亿4000万年,只是在6500万年前才突然灭绝(见本编第五章)。在假定近年来有关这一情景所发现的证据可信的前提下,许多科学家小组认真开展了小行星的监视活动,寻找尚未发现的与地球交叉的小行星。彗星也可能与行星相撞,其中产生巨大效应的一次是1994年7月苏梅克一列维9号彗星与木星的相撞(见下节)。
也许有多至10万颗小行星,其亮度足以最终被望远镜或太空船发现,但是现在只有几千颗得到正式承认。现在知道在这里面最大的一颗叫做谷神星,其直径大约为633英里,最小的也许直径小于1英里。1991年太空飞船伽利略号飞向木星及其卫星系统,途中访问了小行星伽斯普拉,发回了第一张小行星的特写照片,测得它的长度大约10英里,宽度大约七八英里。伽利略号还访问了243艾达,发现它竟有一个自已的卫星。从那时起对其他小行星和彗星也进行了多次访问。
根据最新的理论,大多数小行星也许是在原行星木星(在它形成的初期)的引力下形成的。木星的引力作用避免了小行星在附近组成另一颗大型行星,并且把大多数碎块留在现在的轨道上,把剩下的赶出太阳系,或者进入现在与行星交叉的路径。
巨大的木星
太阳系最大的行星木星甚得行星科学家的关注,因为它是如此之大,它的动力学是如此之像太阳,以至于它本身就形成了一个小小的“太阳系”,有至少28颗卫星围绕着它旋转。从火星越过小行星带后,木星是第一个也是最大的一个气态巨型行星。实际上,它是如此之巨大,以至于若除去太阳本身的质量,它竟承担了太阳系71%的质量。
在20世纪四五十年代间,天文学家基于地面观测所得到的证据,开始对这一巨型天体形成现代看法。天文学家外尔德(Rupert Wildt,1905—1976)在认识木星的结构、动力学和起源方面走在前列。在前太空时期,最引人注目的事实看来就是这一巨型行星更像是太阳,而不像地球。太阳系的内行星(那些在小行星带之内,靠近太阳的行星)都是固态小天体。如果有卫星的话,也只有少数几个,而远离太阳的行星则大部分是由不同的材料组合而成。除了所知甚少的冥王星之外,其他行星都是气态巨星,主要由最简单的元素氢和氦组成。这些外层行星大多还有数量庞大的卫星系统。近来的探测表明,所有这四个气态巨星——土星、木星、天王星和海王星——在其周边都有围绕着行星旋转的光环系统。考虑到内外行星之问具有这些重大差别,现代科学家开始理解为什么木星作为一个行星,它的历史与地球如此大相径庭。
自从大约45亿年前与太阳系同步形成以来,诞生于星云物质的木星和其他原型行星增长得非常快,其强大引力有利于它们抓住原始物质。因此,“构成”木星的化学元素在特性上“和太阳相似”,并且保持至今。尽管地球和内行星都是由同样的星云物质产生,但它们却不能有效地抓住像氢和氦这样的轻气体。于是两类行星经历了非常相异的演化过程。
但是,如果木星在成分上与太阳或其他恒星非常相似,为什么它不继续演化以至于变成一颗恒星呢?
回答又一次涉及木星的大小。尽管它已经大到足以保留它的类恒星组成和它的卫星家族,却没有大到足以在其内部深处开始核反应,从而触发星体爆炸。然而,木星释放的能量的确比从太阳接收的能量要多(不像固态行星)——这主要是由于行星形成过程中,剩余能量产生大量的热加上引力收缩以及其他过程造成的。
第一艘到达木星的星际太空船是先驱者10号,于1972年发射,1983年6月13日圆满完成飞行任务,成为第一个留在太阳系的人造天体。它和它的孪生兄弟先驱者11号,送回了当时最好的数据和照片。后来在1977年,美国发射了两艘旅行者号太空船,以精彩的特写镜头拍摄了外层行星的卫星系统、光环和这些行星本身,这些图片改变了我们对四大气态巨星的认识。旅行者1号在1979年飞越木星,1980年飞越土星,使我们得以近距离窥视木星和土星。旅行者2号停靠了更多的站,1979年飞越木星,1981年飞越土星,1986年飞越天王星,以及1989年飞越海王星。到了2003年,旅行者1号已经越过了太阳系最远的边界,超过了太阳风(也叫做日光层)的外缘。
先驱者和旅行者的太空飞行第一次让科学家对木星的大红斑作了详细观察,有机会观察到那里发生的强烈大气运动。令人惊讶的是,他们发现木星也有一个光环系统,只是比土星光环薄得多,只有大约0.6英里厚,而且是由两部分组成的,一部分约为500英里宽,另一部分则为3 200英里宽。
先驱者和旅行者太空船最惊人的发现之一是木星的伽利略卫星存在各种不同的环境。所谓伽利略卫星指的是伽利略在17世纪发现木星有四个大的内卫星,于是美国宇航局计划了一次特殊的太空飞行——伽利略号太空船,1996年6月抵达大卫星木卫三。这是美国宇航局最成功的太空飞行之一。它在7年里多次近距离掠过木星、木卫一、木卫二、木卫三和木卫四,发现木卫一有强烈而且频繁变动的火山活动,木卫二和木卫三在冰面下有可能存在着液体海洋。特别是木卫二的冰面上显示有绳索状的印记,似乎是冰面重新冻结后形成的裂缝,泥泞的液体在此喷涌而出。有些科学家认为,在木卫二海洋的极端条件中,生物,可能是微生物,有可能生存,特别是如果它被木星和木卫二之间的潮力温暖的话。在地球的极端环境下,例如深海的火山口或者极地冰冠下,也发现过生命的例子。这些例子使得生物学家和地外生物学家修正原先关于生命生存条件的观念。
木卫三是木星系统中最亮的卫星,它也许是由岩石和冰组成的,很可能还有液体海洋。它的表面到处都是黑暗的多坑地带和新近形成的许多平行的山和谷。奇怪的是,木卫四却不存在地质活动史的线索,它的冰状厚地壳(也许厚达150英里)是太阳系中最厚实的地壳。为什么会有这么大的差别呢?
在经历多次的延期之后,伽利略号于2003年冲入木星气状地壳,从而结束其探索使命,就在这一过程中它还在报告它的发现。它的任务完成得非常成功——尽管主天线由于被卡住而在全程中都没有用上。
碰撞过程
就在1993年苏梅克(Eugene Shoemaker,1928—1997)、他的妻子凯洛琳以及另一位天文学家列维(David Levy,1948—)发现了一颗彗星后,天文学家意识到,它已经分裂并会径直冲向木星。这是一个好机会!天文学界开始全力以赴。山顶上的望远镜做好监视准备。伽利略号正在飞向木星的途中,虽然距离甚远,但也被临时征用。还用上了哈勃空间望远镜。1994年7月的一段日子里,彗星的碎片就像一列货车,以大于130 000英里每小时的速度猛烈撞击木星。科学家研究了碰撞的效应——木星的同温层里发生的大爆炸、极度的湍流,以及在碰撞后长期存在的黑斑。以前从未见过类似情景。这一事件提醒我们,在太阳系的早期时代,这类剧烈碰撞事件曾是家常便饭。
土星及其固态光环
夜空中的土星及其光环呈现出的宛如宝石般的明亮令人难以忘怀。伽利略第一个看到这一奇异的突出,后来证明是土星的光环,他苦苦思考它们究竟是什么。1612年,他写信给朋友说:“我的理解力不够,再加上害怕出错,使我对此倍感困惑。”实际上直到先驱者11号和两艘旅行者太空船送回特写图片,即使最强大的天文望远镜也无法为我们解开其错综复杂的结构。
我们在1979年从先驱者号知道,土星非常之冷,冷到—279下,在光环处甚至冷到—328°F,这一现象支持土星光环基本上是由冰组成的理论。先驱者号从土星及其最大的卫星土卫六拍摄的照片虽然比较模糊,但是它们为后来的从旅行者1号和旅行者2号拍摄更新鲜、更贴近的图像做好了准备。
透过遥远的旅行者号眼睛,科学家看到的是一个色彩平淡的行星,与木星相比差远了。土星更为寒冷,这与其不同的内在机制和不同的化学反应有关。两艘旅行者号还让科学家第一次近距离看到土星的大气带和其中的湍流。它们测量到的土星上的风速达到1118英里每小时,比木星上发现的风速快四倍。再有,旅行者号证实,土星这颗巨大的多环行星产生的能量比它从太阳接收的能量多出差不多两倍,相当于1亿个大型发电站。
再有,土星光环隐藏着大量让人吃惊的事情。这些由旋转着的固态冰状物质组成的区域原来比先前想象的还要复杂。那里并不只是天文学家从地球看到的三个环,而是一个复杂且经常变化的系统,这个系统是由成千上万相互作用的小环组成的。光环系统的直径约为249 000英里,由数以百万计的冰和雪的微小粒子组成。当领头卫星靠近光环时还使得光环结构产生扭曲现象,甚至绞成“麻花”状,尘埃那辐射状的排列看上去就像是从行星发出穿过光环的轮辐。
在土星九个已知的卫星中,最有意思的是土卫六,已经知道它是“大气型”的,因为从地球上观测,这一冰状世界具有一个由甲烷组成的大气,也许还可能存在碳氢化合物。土卫六比水星还要大,看来像是有可能曾在遥远的过去孕育过某种生命形式的样子。旅行者号发回的信息更为有趣:土卫六的大气比地球稠密一倍半,大多数是氮,只有一小部分甲烷。在旅行者号之前,人们认为地球是太阳系中唯一的情况,它的大气主要由氮组成。但实际上,土卫六的氮是地球的十倍。遗憾的是,稠密大气里的化学反应往往会产生一种类似于浓雾的状态,使土卫六表面无法被旅行者号的照相机看见,因此这颗卫星至今还有很多未知之谜。
在土卫六表面的“雾”里,以及“雾”的下面情况如何呢?由于氮一般是一种清澈的气体,大气大多由氮组成,那么,是什么构成“雾”的呢?当然,写科幻作品可以不管这些,但是科学家必须严肃地思考,烟雾会不会是某种有机雾气,其中是否也在发生几十亿年前的地球大气中曾发生过的类似化学反应。这些问题激起了如此巨大的兴趣,以至于好几个国家的太空计划,其中包括欧洲宇航局和美国宇航局,合作进行一项太空飞行任务,名字叫卡西尼/惠更斯,1997年发射升空,2004年到达土星。到达以后,惠更斯探测器将穿过土卫六的大气层,试图回答某些问题。与此同时,卡西尼探测器围绕土星旋转,详细研究这颗行星、它的光环和卫星(卫星的数目至少有31个)。
神秘的天王星
天王星就像夜空中一颗遥远的绿色乒乓球,在1781年以前人们对它毫无所知,1781年才被威廉·赫歇尔首次看到。它的直径比地球大四倍,在遥远的轨道上围绕太阳旋转,离开太阳最近的距离是1 695 700 000英里。在旅行者号之前,人们只知道它有5个卫星。直到1977年,对它的了解依然甚少,除了知道一个奇怪的现象,那就是它的轴是“倾斜的”,倾斜度达到98度。所以,不像地球及其他行星的赤道区指向太阳的情况,天王星几乎是沿轴躺着自转的。它绕太阳一周需要84年,在此期间,每个极有42年面向太阳,然后,又有42年陷于黑暗。
就在旅行者号启程之前,1977年,有一个偶然的发现。一组天文学家正在美国宇航局的魁佩尔机载观测站进行观测,它是一架装备特殊的高空飞机,可以在地球大气的干扰区之上飞行。(现在已用另一架机载观测站代替,这个观测站叫做红外天文学同温层观测站,简称SOFIA)计划要求当天王星在一颗特定的恒星面前通过时,对它进行观测,这种方法叫做掩星法,天文学家常常用于对某个天体获取更多的信息。出乎意料的是,从天王星后面的恒星发出的光线,在通过天王星的前后,居然会稍稍变暗。难道他们已在行星的两侧发现了两个新的卫星?进一步的望远镜观测证明不是这样,而是天王星也有环!
所以,旅行者2号的主要任务之一就是对天王星光环进行贴近观察,结果发现最内侧的环距天王星云顶之上约10 000英里,11个环中的6个(其中两个是旅行者2号发现的)只有3~6英里的跨度。三个最宽的也只有10~30英里宽。更令人吃惊的是,这些环似乎主要是由大块的炭黑状物质组成,其中大多数直径在23~3 000英尺之间——比土星巨环系统的尘埃状粒子大得多。
旅行者2号还带给科学家另一不可思议的奥秘,就是天王星那奇特的磁场。太阳系其他行星的磁场大多与其旋转轴几乎平行,天王星的磁场却与它的旋转轴有55度的偏移。当这颗行星沿轴旋转时,它那偏转的磁场在空间里摇晃不定。再有,来自太阳、掠过行星的太阳风,把摇晃的磁场的远侧变成一个伸长的香蕉形。这一效应独一无二。
天王星的大气由氢、氮、碳和氧组成,大气上层熠熠生辉——也许是紫外光——整个行星都覆盖在一层薄雾中,其中的温度都惊人地均匀。强烈的200英里每小时的风,比地球上的喷气流还强一倍,从云层上部吹来。但是旅行者2号无法穿透这层薄雾。
然而,这些卫星让科学人员大吃一惊。天卫五,最靠近天王星的卫星,给出了遥远的过去曾有过剧烈地质活动的证据。它有两种不同的地形,一种非常古老,上面布满由古老陨石坑组成的凹痕;另一种比较年轻,但相当复杂,显然是重大地质变化的结果。上面刻满奇特的类似于跑道的地形以及类似于绳索的印记,再有,尽管天卫五直径只有300英里,却有5万英尺深的峡谷——比地球上的大峡谷还要深十倍——状如在它的表面上刻下的一道路径。旅行者2号还提供了其他四个最大卫星的快照。天卫一在其年轻而复杂的表面上有宽广弯曲的山谷和峡谷。天卫二黑得像天王星的光环。天卫三有可能提供最近三四十亿年间彗星撞击的证据。天卫四和天卫五一样,显示了巨大断层结构的证据,其中有高山和陨石坑,看起来像是曾经一度被黑暗的液体淹没,然后又冻结成现在这个样子。
访问是短暂的,但当旅行者2号于1986年1月离开天王星系统时,却给科学人员留下了许多发人深省的数据。旅行者2号向下一站,也是最后一站飞去,然后飞向太阳系的边缘。
外层巨星海王星
尽管从太阳向外数,第八颗行星海王星要比天王星离太阳更远10亿英里,但它和它的邻居在许多方面仍然极为相似。就离开太阳的距离来说,它是气态巨星中的最后一个,从地面上的望远镜看上去似乎没有特色。它的直径是地球的3.8倍,而其质量却是地球的17.2倍。海王星的大气几乎都是氢,加上少量的氦和甲烷,也许正是甲烷使海王星呈蓝色。有些科学家还相信,尽管甲烷的量很少,却由于吸收太阳光而影响行星的热平衡。地面测量表明,海王星发出的热多于从太阳吸收的热。有些科学家认为,这一超额热量也许是重分子逐渐沉到行星核心时所释放的能量引起的。尽管大多数行星学家认为海王星没有固态表面,但这颗行星的密度却暗示,它可能具有一个小型的坚固内核,外面覆盖着水、甲烷和氨。
但是到了1989年8月,当旅行者2号掠过海王星时,永远地改变了这颗蓝色大行星及其卫星以前从未露出的真面目。在旅行者2号之前,人们只知道两个海王星卫星:海卫一,大小和地球的月亮差不多;海卫二,因其遥远、偏心的轨道使旅行者2号不可能拍摄到它的高分辨率照片。早在1989年6月,即旅行者2号抵达海王星之前两个月,它已经发现了比海卫二还要大的黑色类似冰块的另一颗卫星。当接近海王星的光环系统时,它又发现了总共五个小卫星,类似于旅行者2号在木星和土星光环附近发现的领头卫星。
早在旅行者2号接近海王星这颗奇怪的蓝色气球时,太空船发现在它的大气里有一巨大的风暴系统,即大暗斑,其面积几乎和地球一样大。它处于与木星的大红斑同样的纬度,其相对于行星的大小也与木星上的大红斑相似。速率快到450英里每小时的狂风,使大黑斑绕着行星旋转时,看上去像是一个一头破裂的大豆莫。这只不过是几个巨大风暴系统之一,在它的顶端,还有快速移动的云团,但是让科学家感到迷惑不解的是,海王星如此远离太阳,它所得到的能量怎么能够掀起如此狂烈的风暴。
还有,旅行者号发现的另一个重大意外是海王星的光环,从地球上看去似乎是一些不完全的弧。但是,海王星离地球的遥远距离使得要对其进行鉴别实在是极其困难,而旅行者2号确定了,尽管光环非常昏暗,它们还是完整地环绕着行星,形成了光环系统。
但是当旅行者2号掠过海王星时最激动人心的时刻也许还是体现在海王星的最大卫星海卫一。这一色彩斑驳的粉红天体看来是太阳系最冷的地方,温度大约是-400°F。海卫一看来还有冰火山,甚至也许依然处于活跃期,可以把15英里大小的冷冻氮晶体喷射到稀薄的大气里。
海王星是旅行者2号最后的一站,然后它就飞向太阳系的边缘进入银河系。这一小小的太空船及其同伴留下了大量信息与图像,随着科学家用数以百计的不同方法进行检验和分析,它们源源不断地在丰富人们的想象力。
这一切的开端
所有这些来自宇宙飞船的数据,大大推进了我们关于太阳系形成过程的认识。行星地质学家和物理学家继续钻研数以百万计的照片、图像和统计资料。计算机模拟帮助他们测试场景,测量碰撞的结果、温度、轨道、角度和速度。人们大多同意,太阳、地球和太阳系其他八个行星是在比45亿年前略早一点的时候,靠巨大的星际气体云(原始星云)的收缩而形成,而星际气体主要是由氢、氦和尘埃组成。但是也有科学家相信,这一切可能是从附近超新星的冲击波,或者星际爆炸开始的,冲击波穿过太空,破坏了松散的气体云原始状态的精致平衡。
不管情况怎样,一旦过程开始,收缩就会在气体云内部自然而不可避免的引力作用下继续进行下去。气体云由于剧烈的收缩和自转,成为盘状,并且外缘扁平。与此同时,聚集在中心的大量物质继续收缩,以至质量越来越重,成为演化中的太阳。
当气体云继续旋转并越来越快时,数以亿万计的尘埃微粒开始更剧烈和更频繁地碰撞,集中于盘的平面里,渐渐地这些颗粒的外形越来越大,当这些“星子”——行星及其卫星的早期祖先——达到一定规模时,他们不再仅仅依赖于偶然的碰撞来扩充自己的质量,而是靠引力招揽和吸引更多的固体物质粒子。这些“原行星”逐渐成长,大多数继续随着母星云的方向旋转。
与此同时,尽管增大缓慢并且正在收缩的太阳还没有点燃它的核反应炉,但太阳系内部的温度已经高到足以把水、甲烷和氨等物质蒸发为气体状态。这样一来,星云中不蒸发的成分如铁和硅酸盐就形成了内行星,而离原始太阳越远,温度越低,则越有利于挥发物凝聚成巨型的外行星(木星、土星、天王星和海王星)。与此同时,也允许这些巨星从周围星云吸引和收集大量氢和氦之类的轻元素而不断膨胀。
随着太阳继续收缩,内核的密度和温度不断升高,当达到约1 000×104K的临界温度时,开始靠氢的核聚变产生能量。一旦点火,太阳开始产生太阳风,带电的粒子流就像巨型的叶片鼓风机,把剩余的气体和尘埃颗粒驱赶出太阳系。
与此同时,依靠辐射而增温以及物质增加而产生的能量,使原始行星的核心开始熔融,形成如今所见的行星的内部结构。最后,由于太重而没有被太阳风吹走的剩余星子,在长达5亿年的轰击中不断撞击正在形成中的行星,造成的伤疤到现在还可以在大多数行星上看到。
这值不值得
人类总是希望知道事情的机制和原因,所谓的“纯科学”全在于寻找答案和提出新问题,然后寻找新答案和观察新图像以及整合的方式。但是要寻找这些答案现在变得越来越昂贵了,许多人有理由问,我们为什么要知道这些?我们怎样才能判断,当地球上还有人因患疾病或因饥饿而死亡时,送宇宙飞船到其他行星上去,是值得还是不值得?
也许最好的回答是,与曾经生活在地球上的所有物种相比,在人类存在的这段短暂的时间里,我们在丰富和改善人类的生活方面所得到的成功,恰恰正是我们追求知识和理解的结果。在这一情况中,源于对大气、地质学、磁性和物理学与化学的其余部分所做的比较研究而得到的知识,是无法经别的渠道取得的。迄今所发现的各种事实及其复杂程度已经使科学家大感震惊,他们因此提出了许多问题,引出了无数的假设。行星探测的最直接和熏要结果就是我们对自己地球的精细特性有了非常重要的新理解——意识到它的生态系统在太阳系中的独特性,并且在探讨太阳系中其他无生命和不适于生存的行星过程中得到警示。
地球使命
在探索了与我们一起围绕太阳旋转的荒凉而坚固的球体以及巨型气态行星之后,再回头从太空来看我们的地球,地球更像是一片令人愉悦的绿洲,在旋转中看上去就像蓝绿白相间的大理石。川流不息的水从它的表面流过,太阳那仁慈的辐射温柔地照耀着它的大气,大气里富含氮和氧,它就像是一层保护和养育的毛毯,覆盖着所有的东西。这是迄今为止已从月亮上看到的地球升起。知的仅有一颗支持生命的行星——太空时代对太阳系的探索给我们提供了有益的信息,提醒我们认识这一支持生命的复杂系统有多么脆弱。
在20世纪后半叶,当地质学家、大气科学家、海洋学家和资源专家探索自然界各种起作用的因素时,他们利用了一种不断在增加范围的新工具,从比较行星学到放射性碳同位索测年法,再到计算机模拟和卫星测绘,追溯地球的历史和预测它的近期与远期未来。这些努力结合在一起构成了一项世界范围的使命,以探索我们地球之中难以理解的秘密。
从天上亲看
自从苏联第一颗人造卫星在1957年成功上天以来,地球本身一直处于高空盘旋的各种人造卫星经常性的观测中。尽管许多是用于收集军事情报、商业目的和通信,也还有不少是用于研究地球环境和资源的。1972年发射了第一颗地球资源探测卫星,以后又发射了其他许多卫星。这些人造卫星以不同的轨道围绕地球运行,发现了地球的范艾伦辐射带、追踪海洋里的鱼群运动、揭示沙漠中失踪的古代道路和城市、显示植被的生长和污染分布。气象卫星给我们带来了准确的天气预报,再加上有关大气状态的重要信息,其中包括发现上同温层中存在的保护性臭氧层中一个正在增长的漏洞。资源图像卫星追踪全世界森林和谷物的变化,确定矿床的分布。海洋学家还运用卫星数据研究海洋的机制及其奔腾汹涌的巨流。
实事求是地说,太空时代不仅改变了人类生活的方式,而且帮助我们认清自身在宇宙中的地位。但也许我们对地球看法最为重大的改变来自20世纪中叶以来有关地壳的一系列大胆的新思想,它们得益于新工具和方法的使用。
漂移中的大陆
我们对地壳认识的革命发生于20世纪五六十年代,这时地质学家提出一种思想,认为地壳破裂成好几个大的板块,这些板块会相对发生移动。这一思想的根源可以追溯到19世纪,当时美国纽约州有一位地质学家名叫霍尔(James Hall,1811—1898),他注意到,环绕山区而积累的沉积物厚度至少要超过大陆内部地区10倍以上。从这一观测结果引出如下思想:在地球表面的大陆地壳极为古老,最初是褶皱的槽谷,随着沉积物的日积月累,才逐渐变硬、结块。
1908年和1912年之间,德国地质学家魏格纳(Alfred Lothar Wegener,1880—1930)等人认识到,这些大陆经过漫长的时间,逐步分离、漂移,最终发生碰撞。碰撞挤压褶皱的槽谷,形成山峦地带。
魏格纳认为,各大陆边缘就像一张巨型拼图中的碎片相互可以匹配这一事实,强化了大陆漂移的概念。他还进一步指出,大西洋两侧——巴西和非洲——岩石形成的年龄、类型和结构相互匹配。它们还拥有相同的陆地生物化石,而这些生物不可能靠游泳远渡重洋。然而,并不是每个人都相信,特别是地球物理学家。
当代的故事就是从这里开始。英国地质学家布拉德爵士(Sir Edward Crisp Bullard,1907—1980)利用计算机进行分析,把这两个大陆拼凑在一起,证明完全吻合。然而,另外一些大洋边缘却并不具有同样明显的证据,特别是太平洋和印度洋周围。许多地质学家认为,沿着太平洋边缘,山脉仍然在形成之中,这就解释了在这些区域,为什么火山爆发以及地震频繁发生的原因。
20世纪20年代通过回声测量法研究海床,科学家有可能以新的精确度描绘和模拟海床,从而导致在世界范围内发现了大洋中延伸四万英里的洋脊,洋脊是19世纪大西洋海底电缆铺设者第一次发现的。但是在第二次世界大战后,海底地球物理学家采用军事空基磁强计,测量海床磁强和方向的变化,这就导致美国地质学家海尔兹勒(James Ransom Heirtzler,1925—)从洋脊的来回信号传递看出,洋脊两侧相互间互为镜像。
进一步研究是利用放射性同位素测年法,测量洋脊之顶的玄武岩的年龄和两侧间隙沉积物的年龄,表明洋脊顶部按地球历史看来极其年轻——大约只有100万年的年龄——离开洋脊两侧越远,地壳年龄越老,沉积层越厚。地球物理学家得出这一结论:北大西洋洋脊是新的大洋地壳生长点,两股力量在这里对流,滚烫的熔岩一接触到深海水时立即冷却。洋脊两侧的沉积层不断分离,北大西洋的分离速度大约每年0.4英寸,而在太平洋几乎达每年2英寸。
这些由热对流驱动的相当缓慢的运动来自地幔深处,引起我们所谓的大陆漂移。与跨越非洲东部的东非大裂谷相连的洋底深处也有同样的巨大裂缝,正在漂移的非洲板块和阿拉伯板块在此碰撞和相互分离,从而产生被平行地质断层环绕的“洋底”。这是一个曾经被强烈火山活动严重影响的地方,向上移动的岩块形成突出的山肩,向下沉降的区域则产生巨大的凹陷,充水后变成非洲著名的湖,如图尔卡纳湖。
哥伦比亚大学的科学家在20世纪60年代完成了洋底的详细测绘,有鉴于此,赫斯(Harry Hess,1906—1969)提出一个思想,认为新海洋地壳形成于裂缝处,与此同时,旧地壳沉入洋底的深沟中(有一个这样的深沟就位于太平洋的菲律宾群岛)。赫斯理论也称为海床扩展论,通过测量海洋底部挖掘的岩石年龄已得到验证。
地质学家把赫斯海床扩展论和大陆漂移理论综合成一个单一理论,叫做综合板块构造论(构造,意味着地壳的运动)。根据板块构造论,地壳分裂成好几大块,其中有些完全沉没在水中,还有一些则是大陆地壳的一部分。地质学家通过地震数据分析发现,在地壳之下30~80英里处有一层缓慢运动的流体层,正是它的移动造成了这些运动。板块运动,有时互相撞击,引起山峦、火山和断层带的形成,地震就是沿着这条带发生的。例如,有这样一个板块,其所在的地壳大部分处于太平洋底部;另一部分属于北美大陆,地壳的西部一半则位于大西洋下。
板块构造论解释了许多地质现象,诸如山峦的存在(被板块的重叠或者相挤而抬高)、火山和地震的位置(由于板块之间的张力)以及洋底沟谷的形成(由于板块相互分离)。
尽管有些地质学家开始并不接受这一理论,但是到20世纪80年代,已有可靠证据表明,板块正以预计的模式运动。该理论在预言地球表面的许多特性方面被证明是成功的。到了20世纪80年代,利用人造卫星(如LAGEOS)和激光测量,科学家能够测量板块的缓慢运动,大约为每年一英寸。
恐龙的灭绝
自从18世纪以来,地质学家一直就地球历史和它在漫长时间的演化进行激烈争论。某些颇具名望的18世纪和19世纪的地质学家和比较动物学家,包括生物学家居维叶和邦内特,都认为地球历史上一定发生过周期性的灾变。但是,他们没有太多的证据可以支持这一观点,不久他们的观点被另一种叫做“均变论”的理论推翻,均变论后来又被渐变论取代。渐变论得到了赫顿的工作和莱伊尔与达尔文周密的理论和著作的支持。渐变论主张地球的地质过程及生命体的进化经过了漫长的时间,其间决无突然的变化或者与过去的隔绝。尽管化石和地层都不支持这一假定,但这肯定是记录中某些环节缺失的缘故。
所以,当埃尔德瑞基和古尔德(Stephen Jay Gould,1941—2002)在1972年提出“间断均衡”(punctuated equilibria)理论时,他们知道这必将引来一场争议。事实上,这一思想激励了这些年来对进化过程最激烈的争论。
埃尔德瑞基后来在20世纪80年代成为美国自然历史博物馆无脊椎动物部主席和主任,他对遍布美国东北部的三叶虫化石进行了系统的研究。三叶虫现在早已灭绝,它和小虾与螃蟹一样,体外附有甲壳,一边生长,一边脱落。因此可以想象,一只三叶虫在它的生命期中要脱落许多甲壳,不难找到其中的20来个甲壳化石,于是,三叶虫化石比恐龙之类的化石更容易找到。这位戴着眼镜、满脸胡须的瘦高个年轻人走遍了纽约州和俄亥俄州的北部边远地区和安大略的奥赛布尔河沿岸地区,他发现了极好的样本,许多都已有3.5亿万年的年龄。这些样本是在不同的地质层发现的,但是他找不到证据,能够证明三叶虫在这些地质层相当的时期里曾经发生过任何显著的变化。由于三叶虫化石比大多数无脊椎动物化石有更多的具体细节——它有眼睛、尾巴和背脊,因此埃尔德瑞基有可能做详细的比较,运用显微镜测量眼睛之间的距离、眼睛的高度和尾巴的长度。他把自己的发现与来自德国与非洲北部的类似化石进行比较。然后他注意到,正如赫胥黎等人在19世纪遭遇的情况一样,化石记录似乎显示变化呈“爆发性”,或者新物种大量分化,从而打破了长期的稳定性。当赫胥黎把这一想法告诉他的朋友,进化论的提出者达尔文时,由于达尔文认为进化是一个渐变过程,因而他的回答就是化石记录太粗略,难以支持这一推测。但是,埃尔德瑞基对三叶虫的搜集极为详尽,从而得以看出在相对短的时期里发生快速进化这一事实,因此支持了赫胥黎一百年前的论点。
当埃尔德瑞基向他的同事古尔德征询意见时,这位哈佛大学古生物学教授和比较动物学博物馆主任表示热烈的赞同。古尔德曾经研究过巴哈马蜗牛的变异和进化,它曾经和三叶虫一样长期存在过。古尔德支持埃尔德瑞基的思想,认为现在是承认由岩石和化石诉说的插曲式故事的时候。他们两人共同提出这一思想,联合发表了一篇论文,描述了古尔德取名为“间断均衡”的进化方式。他们论证说,渐变论从未获得化石与岩石提供的证据支持。取而代之的是,变化发生在相对短的时间跨度里(也许只持续10万年,但是正如古尔德所说,这在地质学时间中只是一眨眼的工夫)。在漫长的平静时段里点缀着变化。尽管不是每个人都同意这一革命性的思想,但是它为地球物理学家阿尔瓦雷茨(Waiter Alvarez,1940—)在1980年发表一项地质学发现创造了机会,这项发现一下子又把灾变论推到了科学思想的前沿。
阿尔瓦雷茨在意大利某地工作,正在研究古代沉积层,测试它们沉积的速率。他请求他的父亲,诺贝尔物理学奖获得者路易斯·沃尔特·阿尔瓦雷茨(Luis Walter Alvarez,1911—1988),帮助分析某些黏土岩芯,以确定某些金属的存在,其中包括铱。老阿尔瓦雷茨在劳伦斯伯克利实验室的一些同事能够使用检验黏土是否含有重金属的仪器,于是他说服这些同事对意大利黏土进行了一些试验。令人震惊的是,有一层黏土中铱的指标要高于其上层和下层黏土,高出25倍之多。非常巧,高水平的铱层正是6 500万年前沉积而成的,这时正值白垩纪之末,第三纪之初,地质学家称之为白垩纪一第三纪边界,或者K-T边界。问题在于,为什么会是这样?再有,当检测世界各地的K-T边界样本时,它们表明铱的指标具有同样高的水平!
铱是地球上的一种稀有元素,但是小行星和彗星也含有这一元素。所以,阿尔瓦雷茨父子及其同事们提出了一个很有争议的思想:铱的沉积是由于一个庞大物体闯入地球引起的——小行星或者彗星的大小也许可达到6英里的直径。他们的理由是,这样的碰撞不仅可以解释铱和其他特殊金属的高含量,而且可以解释白垩纪末发生的“大灭绝”——恐龙以及主宰三叠纪、白垩纪和侏罗纪的其他大多数生命的灭绝。他们判断,当小行星袭来时,大量尘埃随之进入大气,这些尘埃满载铱以及其他普遍存在于小行星体内的金属,遮蔽了太阳辐射,这个过程长达5年之久。太阳光的缺乏会使地球冷却,停止光合作用,并且使地球上大多数植物死亡,反过来又使大多数动物无法生存——有人估计无法生存的动物可能达到75%以上。最终,从大气里渗出的铱在K—T边界形成了岩层。
大众媒体抓住了这一思想,《时代》杂志以大字标题发表封面故事——是彗星杀死了恐龙吗?——其中提出了一种说明恐龙灭绝的解释,这种解释得到实际证据的支持。但是这一理论非常大胆,也颇有争议,并不是每个人都同意。
然而,有些人则把这一思想推得更远。K—T边界的大规模灭绝并不是地球历史上唯一性的事件。当两位研究者劳普(David Malcolm Raup,1933—)和赛普考斯基(Jack John Sepkoski,1948—1999)研究类似K-T边界发生的其他大规模灭绝事件时,他们注意到一种有规则的模式,类似的灭绝大概每2 600万年至2 800万年发生一次。他们想不出有任何地球上的因素容易引起这类周期性的“大灭绝”现象。但是来自地球之外的因素呢?最突出的想法是,有一种周期性的影响一直在干扰处于太阳系边缘的彗星云——所谓的奥特云。当这种情况发生时,约十亿颗彗星向太阳坠落,其中一定有少数彗星会袭击地球,从而引起集体灭绝之类的灾难。
是什么引起对太阳系的平衡如此剧烈的干扰呢?有一种理论致力于这样的思想:我们的太阳有一个名叫“复仇女神”的孪生伴星,它周期性地靠近我们这个小小的九行星系统边缘的奥特云,甩出彗星或小行星,使之陷入混乱。对复仇女神的探索仍在继续,新思想和进一步的探究将会揭开其中的奥秘。
尽管新灾变论有许多问题仍然处于争论之中,但是K-T边界时期受到某个天体影响的思想,逐渐得到了大多数地质学家和古生物学家的承认。不管这一理论的其余部分是否有效,不管“复仇女神”是否存在,但显然是有什么东西在地球历史的某一时刻袭击了地球,才使我们得以看到K—T边界时期,以及由此引起的大规模灭绝。确切的理由仍然有待探究。
对于这些思想的探究,包括计算机模拟得出的大气对这类灾变性事件的反应,还激励了天文学家萨根和斯坦福的生态学者埃利希发起的探索活动,探索如果最可怕的人造灾难——核战争爆发,地球会变成什么样子?于是,核冬天概念成了阿尔瓦雷茨理论的一个副产品,该理论认为,恐龙的大规模灭绝与天空中充满烟尘和尘埃云从而引起地球冷却有关。
臭氧层中的漏洞
20世纪后半叶,我们的地球观发生了一个重大变化,原先认为慷慨充裕、不可摧毁的地球看来不再成立,这一变化部分来自我们从太空观察地球获得的信息,其中一项观察就是同温层中大量臭氧的消失。
臭氧向来是亿万年来地球生态系统中的基本要素。在地球的早期历史里,一旦植物开始向大气释放氧,通过太阳能与氧的相互作用臭氧就开始形成。结果就是臭氧层的形成——这是一层宽广的保护罩,集中在地球上空大约20英里处,保护地面上的生命不受到紫外辐射的伤害。紫外辐射可能是有害的,甚至是致命的。由于臭氧开始消失,失去臭氧保护,人类将面临皮肤癌增加的危险,所有生命形式也许都会受到严重影响。再有,由于有关的化学反应,地球面临普遍变暖的趋势,结果会导致两极冰冠融化和农业及地球生态平衡发生广泛变化。
科学家最早开始注意到,臭氧在20世纪70年代就在从地球上层大气消失,情况急转直下。从大型气象试验卫星7号报告的数据中,科学家发现,自从1973年以来,在南极洲的天空中,每逢9月和10月,即南半球的春天里,臭氧层会出现一个漏洞。
1986年又发现了一个类似的漏洞,尽管小得多。这个漏洞位于北极圈上空,由加拿大城市阿勒特发射的气球所发现。加拿大环境部的科学家们用气球把仪器带到天空,发现在北极上空有一个巨大的坑,形成北半球的臭氧“漏斗”。
早在1974年,罗兰(Frank Sherwood Rowland,1927—)和莫林纳(Mario Molina,1943—)就警告说,含氯氟烃(也叫氟利昂或CFC)可能引起臭氧层的减少,氟利昂一般用于喷雾推进器、制冷和聚苯乙烯包装。到了1988年中期,研究已经得到明确结果,肯定上层大气中臭氧层消失的元凶之一正是氟利昂。在一个复杂的化学过程中,当这些化学物到达上层大气时,它们的各种成分与臭氧结合形成其他物质,于是臭氧分解了。罗兰和莫林纳由于他们关于臭氧的形成和分解的工作,获得了1995年诺贝尔化学奖。
20世纪90年代,氟利昂的运用终于开始有所收敛。在全球环境协议得到大多数国家的支持之后,压力之下,数个快餐连锁企业不再使用聚苯乙烯泡沫塑料包装,在喷雾推进器中氟利昂用得也越来越少了,制冷技术已逐渐不用氟利昂这类“杀手”。但是有些科学家仍未放弃呼吁和行动,正如大气化学家平特(Joe Pinto)所说:“我们不可能把真空除尘器带上天空,也不能为天空打入臭氧。”
地球的温室效应
新太空时代带来的最为发人深省的一幅图景就是——毫无疑问,金星曾经像地球一样拥有宽广的水域,金星曾经被人们想象成伊甸园,现在这些海洋早已被金星灼热的大气烘干,金星已变成一座鼓风炉,其中很难有生物生存。那么,地球的海洋和大气会不会步金星的后尘呢?
在地球上,越来越多的二氧化碳废气正从汽车和工厂涌向大气,与破坏大气中臭氧保护层的氟利昂联手,引起温度的显著升高。热带雨林的大规模破坏还干扰了同一大气中二氧化碳与氧的平衡。[纽约植物园的植物学家托马斯(Wayte Thomas)在1993年估计,自从500年前葡萄牙探险者第一次登陆巴西以来,巴西靠近大西洋海岸的森林大多已被砍伐,只剩下2%了。]
有些大气科学家做过这样的估计:如果我们继续以现在的速度把二氧化碳释放到大气中,大气中的二氧化碳水平将会在下个世纪中期的某个时期增加至现在的两倍。新近的计算机模拟表明,大约再过140年,二氧化碳水平将会增加至现在的四倍,从而减弱围绕地球传输热的洋流传送带系统。这将使海洋环流产生重大变化,从而减少深部海水和表面海水的混合,并且限制交换过程的发生,这种交换本来是把深洋中的营养物带到表面,又把氧从表面带到深洋区的过程。大气将逐渐变得越来越热,达到白垩纪时期地球曾经有过的温度,这正是6500万年以前恐龙生活的时代,那时两极冰冠都已经融化。他们补充说,这一不断增加的过程将是不可逆的,尽管二氧化碳水平如果只是加倍,洋流在以后的几个世纪里将会逐渐恢复。
尽管对这些统计数据存在一些不同意见,但情况似乎很明显:要么承认并且改变我们对地球大气的影响,要么我们的环境在下个世纪里将会遭受巨大的破坏。
随着世界各地的人们越来越深入地认识到地球的脆弱性,人们对国际社会提出了新的召唤,希望能够就成功地管理我们的地球进行谈判。阿尔瓦雷茨父子、萨根和埃利希告诉我们的教训就是:当地球大气通过什么手段被玷污时,就将会产生什么后果。看一看金星的情况,就会对失控的温室效应的危险性获得警示。皮肤癌的发生率越来越高,特别是在澳大利亚和赤道与温带地区,表明控制臭氧层漏洞已迫在眉睫。物种及其生态环境的脆弱性,要求对我们赖以生存的自然环境和我们的行星所需要的平衡进行深入的反思。时间会告诉我们,我们是不是能够成为优秀的管理者。但是有一件事情我们可以肯定:如果我们能够找到并且能够理解所有的途径,注意到每个部分都与其他部分相互作用——从最基本和最基础的要素做起,我们就能够管理好我们的环境。这一计划标志了过去半个世纪物理科学家的努力,也激励了生命科学家的工作。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源